## 1. Introduction

## 2. The Model

#### 2.1. Quantum Mechanics

#### 2.2. Thermal Clocks

#### 2.3. Light-Clocks

## 3. Some Consequences

#### 3.1. Relativistic Invariance

#### 3.2. Time

## 4. The Structure of Space-Time

#### 4.1. Minkowski Space

#### 4.2. Gravity

#### 4.3. Some Thoughts on Gravity

## 5. Conclusions

## Funding

## Conflicts of Interest

## References

- Smolin, L. What are we missing in our search for quantum gravity? In Foundations of Mathematics and Physics One Century after Hilbert; Springer-Verlag GmbH: Heidelberg, Germany, 2018; pp. 287–304, ISIN 13 978-3-319-64812-5. [Google Scholar]
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time Symmetry in the Quantum Process of Measurement. Phys. Rev. B
**1964**, 134, 1410–1460. [Google Scholar] [CrossRef] - Cramer, J. Transactional Interpretation of Quantum Mechanics. Rev. Mod. Phys.
**2009**, 5, 795–798. [Google Scholar] [CrossRef] - Kastner, R.E. The Transactional Interpretation of Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2013; ISBN-13 978-0-521-76415-5. [Google Scholar]
- Elitzur, A.C.; Dolev, S. Becoming as a Bridge between Quantum Mechanics and Relativity. In Endophysics, Time, Quantum and the Subjective; Buccheri, R., Ed.; World Scientific Publishing Co.: Hackensack, NJ, USA, 2005; pp. 197–201. [Google Scholar]
- Christian, J. Passage of Time in a Planck scale rooted Structure. Int. J. Mod. Phys. D
**2004**, 13, 1037–1071. [Google Scholar] [CrossRef] - Maudlin, T. Three measurement problems. Topoi
**1995**, 14, 7–15. [Google Scholar] [CrossRef] - Born, M. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik
**1926**, 37, 863–867. [Google Scholar] [CrossRef] - Schlatter, A. On the Role of Unitary-Symmetry for the Foundation of Probability in a Realist Approach to Quantum Physics. Symmetry
**2018**, 10, 737. [Google Scholar] [CrossRef] - Margolus, N.; Levitin, L.B. The maximum speed of dynamical evolution. Physica D
**1998**, 120, 188–195. [Google Scholar] [CrossRef] - Lubkin, E. Keeping the Entropy of Measurement: Szilard revisited. Int. J. Theor. Phys.
**1987**, 26, 523–534. [Google Scholar] [CrossRef] - Kastner, R.E.; Cramer, J.G. Quantifying Absorption in the Transactional Interpretation. Int. J. Quantum Found.
**2018**, 4, 210–222. [Google Scholar] - Davies, P.W.C. Extension of Wheeler-Feynman quantum theory to the relativistic domain II: Emission processes. J. Phys. A Gen. Phys.
**1972**, 5, 1025–1036. [Google Scholar] [CrossRef] - Narlikar, J.V. On the general correspondence between field theories and the theories of direct interparticle action. Math. Proc. Camb. Philos. Soc.
**1968**, 64, 1071–1079. [Google Scholar] [CrossRef] - Shimony, A. The transient now. In Search for a Naturalistic World View; Cambridge University Press: Cambridge, UK, 1993; Volume II, pp. 271–288. [Google Scholar] [CrossRef]
- Veltman, M. Relativistic Quantum Mechanics of Free Particles. In Diagrammatica; Cambridge Lecture Notes in Physics; Cambridge University Press: Cambridge, UK, 1994; pp. 15–31, ISBN-13 978-0-521-45692-0. [Google Scholar]
- Savitt, S.F. The transient nows. In Quantum Reality, Relativistic Causality and Closing the Epistemic Circle; Myrvold, W., Christian, J., Eds.; Springer-Verlag GmbH: Heidelberg, Germany, 2009; pp. 349–362. [Google Scholar] [CrossRef]
- Gisin, A. Impossibility of covariant, deterministic non local hidden-variable extensions of quantum theory. Phys. Rev. A
**2011**, 83, 020102. [Google Scholar] [CrossRef] - Dürr, D.; Lazarovici, D. Nichtlokalität durch Retrokausalität. In Verständliche Quantenmechanik, 1st ed.; Springer: Heidelberg, Germany, 2018; pp. 215–217. ISBN 978-3-662-55888-1. [Google Scholar]
- Bell, J.S. La Nouvelle cuisine. In Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2004; pp. 232–248, ISBN-13 978-0-521-52338-7. [Google Scholar]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 km. Nature
**2015**, 526, 682–686. [Google Scholar] [CrossRef] [PubMed] - Leifer, M.S.; Pusey, M.F. Is a time symmetric interpretation of quantum theory possible without retrocausality? Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
**2017**, 473, 20160607. [Google Scholar] [CrossRef] [PubMed] - Price, H. Toy models for retrocausality. Stud. Hist. Philos. Mod. Phys.
**2008**, 39, 752–761. [Google Scholar] [CrossRef] - Adlam, E. Spooky Action at a Temporal Distance. Entropy
**2018**, 20, 41. [Google Scholar] [CrossRef] - Aharonov, Y.; Cohen, E.; Grossman, D.; Elitzur, A.C. Can Weak measurement Lend Empirical Support to Quantum Retrocausality? Eur. Phys. J. Conf.
**2013**, 58, 01015. [Google Scholar] [CrossRef] - Baylis, W.E. De Broglie Waves as an Effect of Clock Desynchronization. Can. J. Phys.
**2007**, 85, 1317–1323. [Google Scholar] [CrossRef] - Kastner, R.E. De Broglie waves as the “Bridge of becoming” between quantum theory and relativity. Found. Sci.
**2013**, 8, 1–9. [Google Scholar] [CrossRef] - Schlatter, A. On the Principle of Synchronization. Entropy
**2018**, 20, 741. [Google Scholar] [CrossRef] - Verlinde, E.J. On the origin of gravity and the laws of Newton. J. High Energy Phys.
**2011**, 29, 321. [Google Scholar] [CrossRef] - Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett.
**1995**, 75, 1260–1263. [Google Scholar] [CrossRef] - Hoefer, C. Energy Conservation in GTR. Stud. Philos. Hist. Mod. Phys.
**2000**, 31, 187–199. [Google Scholar] [CrossRef] - Lam, V. Gravitational and Nongravitational Energy: The Need for Background Structures. Philos. Sci.
**2011**, 78, 1012–1024. [Google Scholar] [CrossRef] - Schlatter, A. On the vacuum energy in Bohmian mechanics. J. Phys. Commun.
**2018**, 2, 075006. [Google Scholar] [CrossRef] - Sakharov, A.D. Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl.
**1968**, 12, 1040–1041. [Google Scholar] [CrossRef] - Padmanabhan, T. Thermodynamical Aspects of Gravity: New insights. Rept. Prog. Phys.
**2010**, 73, 046901. [Google Scholar] [CrossRef] - Hu, B.L. Emergent/quantum gravity: Macro/micro structures of spacetime. J. Phys. Conf. Ser.
**2009**, 174, 012015. [Google Scholar] [CrossRef] - Linnemann, N.S.; Visser, M.R. Hints towards the Emergent Nature of Gravity. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys.
**2018**, 64, 1–13. [Google Scholar] [CrossRef] - Baryshev, Y.V. Field Theory of Gravitation: Reality and Desire. Gravitation
**1996**, 2, 69–81. [Google Scholar] - Feynman, R. Gravitation as a Consequence of Other Fields. In Feynman Lectures on Gravitation; Westview Press: Boca Raton, FL, USA, 2018; pp. 15–17, ISBN-13 978-0-8133-4038-8. [Google Scholar]
- Bell, J.S. How to teach special relativity. In Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2004; pp. 67–80, ISBN-13 978-0-521-52338-7. [Google Scholar]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).