Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review
Abstract
:1. Introduction
2. Initiation of Shear Bands under Complex Stress Fields
3. Macroscopic Deformation Behavior under Gradient Stress Distribution
3.1. Stress Gradient Resulting from Tailored Sample Geometry (Loading Angle)
3.2. Effect of Surface Residual Stress
4. Tunable Plastic Deformation Behavior under Tailored Complex Stress Fields
4.1. Guiding the Propagation of Shear Bands and Cracks
4.2. Tunable Criticality in Flow Serrations
4.3. Achieving Large Macroscopic Plasticity/Axial Elongation
5. Transition of Deformation Modes under Complex Stress Fields
6. Deformation Behavior of HEAs under Complex Stress Fields
7. Conclusions and Future Directions
- Although studies have been devoted to investigating the formation of shear bands under complex stress fields, how to control the formation of a shear band under a given complex stress fields is still challenging, especially under experimental observations. The localization of plastic deformation in BMGs at submicron scales involves size effect and transition of deformation modes. Due to different mechanical/physical properties, differences may exist during the formation of shear bands when characterized in specimens with varying sample dimensions. With complex stress fields, the formation and propagation of shear bands can be tailored, and even be eliminated by homogeneous deformation. The mechanisms on the plastic deformation of BMGs under complex stress fields are worthy of further attention to uncover the fundamental deformation/fracture mechanisms of BMGs.
- Extensive studies have shown that the burst of shear bands is not an independent event and affected by previously existing shear bands [73,96]. The flow serrations in BMGs, which are related to the formation of shear bands, may also have intrinsic links. Despite the well-known tunable power-law criticality, how to predict and control the serrated plastic flows in BMGs is still very difficult and challenging. The control of the initiation and propagation of shear bands under complex stress fields could be helpful for shedding more light into the underlying relationships among the bursts of flow serrations.
- The engineering applications of BMGs still have many challenges due to catastrophic failures and metastable microstructures, associated with uncertainty in mechanical properties. The achievement of controllable plastic deformation behavior under complex stress fields may not only improve the macroscopic mechanical performance, but also lead to more reliable behavior. Combining with tailored complex stress fields, BMG devices/structures with enhanced performance as well as predictable properties can be further developed, exploring the engineering applications of BMGs.
- HEAs have some characteristics similar to BMGs, for example, the serrated plastic flows which are difficult to predict/control. The introducing of complex stress fields can result in the evolution of microstructures, such as phase transition and mechanical twining, which may also be beneficial for uncovering the deformation mechanisms of HEAs. Furthermore, with controllable evolution of microstructures, the outstanding mechanical properties of HEAs could be further improved and optimized.
Author Contributions
Funding
Conflicts of Interest
References
- Plummer, J.; Johnson, W.L. Is metallic glass poised to come of age? Nat. Mater. 2015, 14, 553–555. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Yavari, A.R.; Lewandowski, J.J.; Eckert, J. Mechanical properties of bulk metallic glasses. MRS Bull. 2007, 32, 635–638. [Google Scholar] [CrossRef]
- Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Chen, M.W.; Inoue, A.; Zhang, W.; Sakurai, T. Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 2006, 96, 245502. [Google Scholar] [CrossRef] [PubMed]
- Hieronymus-Schmidt, V.; Rosner, H.; Wilde, G.; Zaccone, A. Shear banding in metallic glasses described by alignments of eshelby quadrupoles. Phys. Rev. B 2017, 95, 134111. [Google Scholar] [CrossRef]
- Wang, J.G.; Pan, Y.; Song, S.X.; Sun, B.A.; Wang, G.; Zhai, Q.J.; Chan, K.C.; Wang, W.H. How hot is a shear band in a metallic glass? Mater. Sci. Eng. A 2016, 651, 321–331. [Google Scholar] [CrossRef]
- Dai, L.H.; Jiang, M.Q.; Wang, W.H. Prediction of shear-band thickness in metallic glasses. Scripta Mater. 2009, 60, 1004–1007. [Google Scholar] [CrossRef]
- Joshi, S.P.; Ramesh, K.T. Stability map for nanocrystalline and amorphous materials. Phys. Rev. Lett. 2008, 101, 025501. [Google Scholar] [CrossRef]
- Liu, C.; Roddatis, V.; Kenesei, P.; Maass, R. Shear-band thickness and shear-band cavities in a Zr-based metallic glass. Acta Mater. 2017, 140, 206–216. [Google Scholar] [CrossRef]
- Han, Z.H.; Yang, W.; Wu, F.; Li, Y. Invariant critical stress for shear banding in a bulk metallic glass. Appl. Phys. Lett. 2008, 93, 231912. [Google Scholar] [CrossRef]
- Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater. 2009, 57, 5146–5155. [Google Scholar] [CrossRef]
- Ketov, S.V.; Louzguine-Luzgin, D.V. Localized shear deformation and softening of bulk metallic glass: Stress or temperature driven? Sci. Rep. 2013, 3, 02798. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.H.; Kato, H.; Gangwar, K.; Lee, S.; Kim, H.S. Shear banding behavior and fracture mechanisms of Zr55Al10Ni5Cu30 bulk metallic glass in uniaxial compression analyzed using a digital image correlation method. Intermetallics 2013, 32, 21–29. [Google Scholar] [CrossRef]
- Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Ge, Q.; Qu, S.; Jiang, Q.K.; Nie, X.P.; Jiang, J.Z. Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution. Appl. Phys. Lett. 2008, 92, 211905. [Google Scholar] [CrossRef]
- Wu, W.F.; Zhang, C.Y.; Zhang, Y.W.; Zeng, K.Y.; Li, Y. Stress gradient enhanced plasticity in a monolithic bulk metallic glass. Intermetallics 2008, 16, 1190–1198. [Google Scholar] [CrossRef]
- Chen, S.H.; Chan, K.C.; Xia, L. Deformation behavior of a Zr-based bulk metallic glass under a complex stress state. Intermetallics 2013, 43, 38–44. [Google Scholar] [CrossRef]
- Brothers, A.H.; Dunand, D.C. Ductile bulk metallic glass foams. Acta Mater. 2005, 17, 484–486. [Google Scholar] [CrossRef]
- Brothers, A.H.; Dunand, D.C. Plasticity and damage in cellular amorphous metals. Adv. Mater. 2005, 53, 4427–4440. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Inoue, A.; Wada, T. Improved mechanical properties of bulk glassy alloys containing spherical pores. Mater. Sci. Eng. A 2007, 471, 144–150. [Google Scholar] [CrossRef]
- Sarac, B.; Ketkaew, J.; Popnoe, D.O.; Schroers, J. Honeycomb structures of bulk metallic glasses. Adv. Funct. Mater. 2012, 22, 3161–3169. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Z.; Robinson, H.M.; Schroers, J. Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures. Acta Mater. 2014, 73, 259–274. [Google Scholar] [CrossRef]
- Chen, S.H.; Chan, K.C.; Wu, F.F.; Xia, L. Pronounced energy absorption capacity of cellular bulk metallic glasses. Appl. Phys. Lett. 2014, 104, 111907. [Google Scholar] [CrossRef]
- Wang, W.H. Bulk metallic glasses with functional physical properties. Adv. Mater. 2009, 21, 4524–4544. [Google Scholar] [CrossRef]
- Ma, E.; Cheng, Y.Q. Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 2011, 56, 379–473. [Google Scholar] [CrossRef]
- Takeuchi, S.; Edagawa, K. Atomistic simulation and modeling of localized shear deformation in metallic glasses. Prog. Mater. Sci. 2011, 56, 785–816. [Google Scholar] [CrossRef]
- Nieh, T.G.; Yang, Y.; Lu, J.; Liu, C.T. Effect of surface modifications on shear banding and plasticity in metallic glasses: An overview. Prog. Nat. Sci. 2012, 22, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.B.; Wang, W.H.; Samwer, K. The beta relaxation in metallic glasses: An overview. Mater. Today 2013, 16, 183–191. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Louzguina-Luzgina, L.V.; Churyumov, A.Y. Mechanical properties and deformation behavior of bulk metallic glasses. Metals 2013, 3, 1–22. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C. Fe-based amorphous coatings: Structures and properties. Thin Solid Films 2014, 561, 70–86. [Google Scholar] [CrossRef]
- Lin, Y.C.; Tsai, Y.C.; Ono, T.; Liu, P.; Esashi, M.; Gessner, T.; Chen, M.W. Metallic glass as a mechanical material for microscanners. Adv. Funct. Mater. 2015, 25, 5677–5682. [Google Scholar] [CrossRef]
- Sarac, B.; Sopu, D.; Park, E.; Hufenbach, J.K.; Oswald, S.; Stoica, M.; Eckert, J. Mechanical and structural investigation of porous bulk metallic glasses. Metals 2015, 5, 920–933. [Google Scholar] [CrossRef]
- Sun, B.A.; Wang, W.H. The fracture of bulk metallic glasses. Prog. Mater. Sci. 2015, 74, 211–307. [Google Scholar] [CrossRef]
- Trexler, M.M.; Thadhani, N.N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55, 759–839. [Google Scholar] [CrossRef]
- Chen, S.H.; Cheng, H.Y.; Chan, K.C.; Wang, G. Metallic glass structures for mechanical-energy-dissipation purpose: A review. Metals 2018, 8, 689. [Google Scholar] [CrossRef]
- Schroers, J. Processing of bulk metallic glass. Adv. Mater. 2010, 22, 1566–1597. [Google Scholar] [CrossRef] [PubMed]
- Jafary-Zadeh, M.; Kumar, G.P.; Branicio, P.S.; Seifi, M.; Lewandowski, J.J.; Cui, F. A critical review on metallic glasses as structural materials for cardiovascular stent applications. J. Funct. Biomater. 2018, 9, 19. [Google Scholar] [CrossRef]
- Khan, M.M.; Nemati, A.; Rahman, Z.U.; Shah, U.H.; Asgar, H.; Haider, W. Recent advancements in bulk metallic glasses and their applications: A review. Crit. Rev. Solid State 2018, 43, 233–268. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.P.; Chen, S.Y.; Xie, X.; Liaw, P.K.; Dahmen, K.A.; Qiao, J.W.; Wang, Y.L. Serration and noise behaviors in materials. Prog. Mater. Sci. 2017, 90, 358–460. [Google Scholar] [CrossRef]
- Argon, A.S.; Shi, L.T. Development of visco-plastic deformation in metallic glasses. Acta Metall. 1983, 31, 499–507. [Google Scholar] [CrossRef]
- Spaepen, F. A microscopic mechanism for steady-state inhomogeneous flow in metallic gasses. Acta Metall. 1977, 25, 407–415. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Greer, A.L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006, 5, 15–18. [Google Scholar] [CrossRef]
- Leamy, H.J.; Chen, H.S.; Wang, T.T. Plastic-flow and fracture of metallic glass. Metall. Trans. 1972, 3, 699–708. [Google Scholar] [CrossRef]
- Steif, P.S.; Spaepen, F.; Hutchinson, J.W. Strain Localization in Amorphous Metals. Acta Metall. 1982, 30, 447–455. [Google Scholar] [CrossRef]
- Johnson, W.L.; Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/T-g)(2/3) temperature dependence. Phys. Rev. Lett. 2005, 95, 195501. [Google Scholar] [CrossRef] [PubMed]
- Yavari, A.R.; Aljerf, M.; Georgarakis, K. Shaping of metallic glasses by stress-annealing without thermal embrittlement. Acta Mater. 2011, 59, 3817–3824. [Google Scholar] [CrossRef]
- Hufnagel, T.C.; Schuh, C.A.; Falk, M.L. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Mater. 2016, 109, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.W. Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 2008, 38, 445–469. [Google Scholar] [CrossRef]
- Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55, 4067–4109. [Google Scholar] [CrossRef]
- Wang, W.H.; Yang, Y.; Nieh, T.G.; Liu, C.T. On the source of plastic flow in metallic glasses: Concepts and models. Intermetallics 2015, 67, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Maaß, R.; Loffler, J.F. Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 2015, 25, 2353–2368. [Google Scholar] [CrossRef]
- Qiao, J.W.; Jia, H.L.; Liaw, P.K. Metallic glass matrix composites. Mater. Sci. Eng. R 2016, 100, 1–69. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Wang, X.L.; Shan, Z.W. Mechanical behavior of micronanoscaled metallic glasses. Mater. Res. Lett. 2016, 4, 63–74. [Google Scholar] [CrossRef]
- Guo, H.; Yan, P.F.; Wang, Y.B.; Tan, J.; Zhang, Z.F.; Sui, M.L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.H.; Wu, F.F.; Huang, J.Y.; Wang, J.Q.; Mao, S.X. Superelongation and Atomic Chain Formation in Nanosized Metallic Glass. Phys. Rev. Lett. 2010, 104, 215503. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.C.; Greer, J.R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 2010, 9, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Cheng, Y.Q.; Shan, Z.W.; Li, J.; Wang, C.C.; Han, X.D.; Sun, J.; Ma, E. Approaching the ideal elastic limit of metallic glasses. Sci. Rep. 2012, 3, 609. [Google Scholar] [CrossRef] [Green Version]
- Liontas, R.; Jafary-Zadeh, M.; Zeng, Q.S.; Zhang, Y.W.; Mao, W.L.; Greer, J.R. Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass. Acta Mater. 2016, 118, 270–285. [Google Scholar] [CrossRef] [Green Version]
- Sha, Z.D.; Pei, Q.X.; Sorkin, V.; Branicio, P.S.; Zhang, Y.W.; Gao, H.J. On the notch sensitivity of CuZr metallic glasses. Appl. Phys. Lett. 2013, 103, 253104. [Google Scholar] [CrossRef]
- Sha, Z.D.; Pei, Q.X.; Liu, Z.S.; Zhang, Y.W.; Wang, T.J. Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches. Sci. Rep. 2015, 5, 10797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, T.; Chauniyal, A.; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading. J. Mech. Phys. Solids 2018, 111, 393–413. [Google Scholar] [CrossRef]
- Cui, W.; Pan, J.; Blackwood, D.J.; Li, Y. Voronoi volume recovery during plastic deformation in deep-notched metallic glasses. J. Alloys Compd. 2019, 776, 460–468. [Google Scholar] [CrossRef]
- Adibi, S.; Branicio, S.P.; Liontas, R.; Cheng, D.Z.; Greer, J.R.; Scrolovitz, D.J.; Joshi, S.P. Surface roughness imparts tensile ductility to nanoscale metallic glasses. Extreme Mech. Lett. 2015, 5, 88–95. [Google Scholar] [CrossRef]
- Deng, Q.S.; Cheng, Y.Q.; Yue, Y.H.; Zhang, L.; Zhang, Z.; Han, X.D.; Ma, E. Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding. Acta Mater. 2011, 59, 6511–6518. [Google Scholar] [CrossRef]
- Tariq, N.H.; Akhter, J.I.; Hasan, B.A.; Hyder, M.J. Design induced plastic deformation in Zr-based bulk metallic glass. J. Alloys Compd. 2010, 507, 414–418. [Google Scholar] [CrossRef]
- Wu, W.F.; Li, Y.; Schuh, C.A. Strength, plasticity and brittleness of bulk metallic glasses under compression: Statistical and geometric effects. Philos. Mag. 2008, 88, 71–89. [Google Scholar] [CrossRef]
- Chen, S.H.; Chan, K.C.; Xia, L. Deformation evolution of a Zr-based bulk metallic glass under three-point bending tests. Adv. Mater. Res. 2014, 939, 31–38. [Google Scholar] [CrossRef]
- Chen, S.H.; Chan, K.C.; Xia, L. Fracture morphologies of Zr-based bulk metallic glasses under different stress states. Adv. Eng. Mater. 2015, 17, 366–373. [Google Scholar] [CrossRef]
- Chen, S.H.; Chan, K.C.; Xia, L. Effect of stress gradient on the deformation behavior of a bulk metallic glass under uniaxial tension. Mater. Sci. Eng. A 2013, 574, 262–265. [Google Scholar] [CrossRef]
- Fan, J.J.; Yan, Y.F.; Chen, S.H.; Ng, C.H.; Wu, F.F.; Chan, K.C. Reliability of the plastic deformation behavior of a Zr-based bulk metallic glass. Intermetallics 2016, 74, 25–30. [Google Scholar] [CrossRef]
- Chen, S.H.; Yue, T.M.; Tsui, C.P.; Chan, K.C. Effect of external disturbances on the strain-rate dependent plastic deformation behavior of a bulk metallic glass. Mater. Sci. Eng. A 2016, 669, 103–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.H.; Greer, A.L. Making metallic glasses plastic by control of residual stress. Nat. Mater. 2006, 5, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.Q.; Li, Y.; Yi, M.; Li, R.; Pang, S.J.; Wang, H.; Zhang, T. Optimization of mechanical properties of bulk metallic glasses by residual stress adjustment using laser surface melting. Scripta Mater. 2012, 66, 1057–1060. [Google Scholar] [CrossRef]
- Wu, G.J.; Li, R.; Liu, Z.Q.; Chen, B.Q.; Li, Y.; Cai, Y.; Zhang, T. Induced multiple heterogeneities and related plastic improvement by laser surface treatment in CuZr-based bulk metallic glass. Intermetallics 2012, 24, 50–55. [Google Scholar] [CrossRef]
- Chen, S.H.; Yue, T.M.; Tsui, C.P.; Chan, K.C. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension. Sci. Rep. 2016, 6, 36130. [Google Scholar] [CrossRef] [Green Version]
- Kimura, H.; Masumoto, T. Plastic constraint and ductility in tensile notched specimens of amorphous Pd78Cu6Si16. Metall. Trans. A 1983, 14, 709–716. [Google Scholar] [CrossRef]
- Demetriou, M.D.; Launey, M.E.; Garrett, G.; Schramm, J.P.; Hofmann, D.C.; Johnson, W.L.; Ritchie, R.O. A damage-tolerant glass. Nat. Mater. 2011, 10, 123–128. [Google Scholar] [CrossRef]
- Tandaiya, P.; Ramamurty, U.; Narasimhan, R. Mixed mode (I and II) crack tip fields in bulk metallic glasses. J. Mech. Phys. Solids 2009, 57, 1880–1897. [Google Scholar] [CrossRef]
- Tandaiya, P.; Narasimhan, R.; Ramamurty, U. On the mechanism and the length scales involved in the ductile fracture of a bulk metallic glass. Acta Mater. 2013, 61, 1558–1570. [Google Scholar] [CrossRef]
- Yi, J.; Wang, W.H.; Lewandowski, J.J. Guiding and deflecting cracks in bulk metallic glasses to increase damage tolerance. Adv. Eng. Mater. 2015. [Google Scholar] [CrossRef]
- Yang, G.N.; Shao, Y.; Yao, K.F. The shear band controlled deformation in metallic glass: A perspective from fracture. Sci. Rep. 2016, 6, 21852. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Gao, Y.F.; Bei, H.B. Instability analysis and free volume simulations of shear band directions and arrangements in notched metallic glasses. Sci. Rep. 2016, 6, 34878. [Google Scholar] [CrossRef] [PubMed]
- Kubin, L.P.; Estrin, Y. The Portevin-Le Chatelier effect in deformation with constant stress rate. Acta Metall. 1985, 33, 397–407. [Google Scholar] [CrossRef]
- Lebyodkin, M.A.; Brechet, Y.; Estrin, Y.; Kubin, L.P. Statistics of the catastrophic slip events in the Portevin—Le Châtelier effect. Phys. Rev. Lett. 1995, 74, 4758–4761. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chan, K.C.; Xia, L.; Yu, P.; Shen, J.; Wang, W.H. Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater. 2009, 57, 6146–6155. [Google Scholar] [CrossRef]
- Sarmah, R.; Ananthakrishna, G.; Sun, B.A.; Wang, W.H. Hidden order in serrated flow of metallic glasses. Acta Mater. 2011, 59, 4482–4493. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.L.; Chen, C.; Liu, Z.Y.; Li, R.; Wang, G. Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Phys. Rev. B 2012, 86, 134303. [Google Scholar] [CrossRef] [Green Version]
- Bian, X.L.; Wang, G.; Chan, K.C.; Ren, J.L.; Gao, Y.L.; Zhai, Q.J. Shear avalanches in metallic glasses under nanoindentation: Deformation units and rate dependent strain burst cut-off. Appl. Phys. Lett. 2013, 103, 101907. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, J.W.; Wang, G.; Dahmen, K.A.; Liaw, P.K.; Wang, Z.H.; Wang, B.C.; Xu, B.S. The mechanism of power-law scaling behavior by controlling shear bands in bulk metallic glass. Mater. Sci. Eng. A 2015, 639, 663–670. [Google Scholar] [CrossRef]
- Li, J.J.; Wang, Z.; Qiao, J.W. Power-law scaling between mean stress drops and strain rates in bulk metallic glasses. Mater. Des. 2016, 99, 427–432. [Google Scholar] [CrossRef]
- Antonaglia, J.; Antonaglia, J.; Wright, W.J.; Gu, X.J.; Byer, R.R.; Hufnagel, T.C.; LeBlanc, M.; Uhl, J.T.; Dahmen, K.A. Bulk metallic glasses deform via slip avalanches. Phys. Rev. Lett. 2014, 112, 155501. [Google Scholar] [CrossRef] [PubMed]
- Krisponeit, J.O.; Pitikaris, S.; Avila, K.E.; Kuchemann, S.; Kruger, A.; Samwer, K. Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses. Nat. Commun. 2014, 5, 3616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonaglia, J.; Xie, X.; Schwarz, G.; Wraith, M.; Qiao, J.; Zhang, Y.; Liaw, P.K.; Uhl, J.T.; Dahmen, K.A. Tuned critical avalanche scaling in bulk metallic glasses. Sci. Rep. 2014, 4, 4382. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.A.; Pauly, S.; Tan, J.; Stoica, M.; Wang, W.H.; Kuehn, U.; Eckert, J. Serrated flow and stick-slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater. 2012, 60, 4160–4171. [Google Scholar] [CrossRef]
- Chen, S.H.; Chan, K.C.; Wang, G.; Wu, F.F.; Xia, L.; Ren, J.L.; Li, J.; Dahmen, K.A.; Liaw, P.K. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass. Sci. Rep. 2016, 6, 21967. [Google Scholar] [CrossRef] [Green Version]
- Louzguine-Luzgin, D.V.; Zadorozhnyy, V.Y.; Chen, N.; Ketov, S.V. Evidence of the existence of two deformation stages in bulk metallic glasses. J. Non-Cryst. Solids 2014, 396, 20–24. [Google Scholar] [CrossRef]
- Tang, H.H.; Cai, Y.C.; Zuo, Q.; Chen, S.H.; Liu, R.P. Achieving high uniformity of the elastic strain energy accumulation rate during the serrated plastic flows of bulk metallic glasses. Mater. Sci. Eng. A 2018, 736, 269–275. [Google Scholar] [CrossRef]
- Bei, H.; Lu, Z.P.; Shim, S.; Chen, G.; George, E.P. Specimen size effects on Zr-based bulk metallic glasses investigated by uniaxial compression and spherical nanoindentation. Metall. Mater. Trans. A 2010, 41A, 1735–1742. [Google Scholar] [CrossRef]
- Zhao, J.X.; Qu, R.T.; Wu, F.F.; Li, S.X.; Zhang, Z.F. Deformation behavior and enhanced plasticity of Ti-based metallic glasses with notches. Philos. Mag. 2010, 90, 3867–3877. [Google Scholar] [CrossRef]
- Zhao, J.X.; Qu, R.T.; Wu, F.F.; Li, S.X.; Zhang, Z.F. Enhanced plastic deformation in a metallic glass induced by notches. Philos. Mag. Lett. 2010, 90, 875–882. [Google Scholar] [CrossRef]
- Zhao, J.X.; Wu, F.F.; Qu, R.T.; Li, S.X.; Zhang, Z.F. Plastic deformability of metallic glass by artificial macroscopic notches. Acta Mater. 2010, 58, 5420–5432. [Google Scholar] [CrossRef]
- Zhao, J.X.; Zhang, Z.F. Comparison of compressive deformation and fracture behaviors of Zr- and Ti-based metallic glasses with notches. Mater. Sci. Eng. A 2011, 528, 2967–2973. [Google Scholar] [CrossRef]
- Zhao, J.X. Achieving the desirable compressive plasticity by installing notch cluster in metallic glass. Mater. Sci. Eng. A 2015, 634, 134–140. [Google Scholar] [CrossRef]
- Qu, R.T.; Calin, M.; Eckert, J.; Zhang, Z.F. Metallic glasses: Notch-insensitive materials. Scr. Mater. 2012, 66, 733–736. [Google Scholar] [CrossRef]
- Qu, R.T.; Zhao, J.X.; Stoica, M.; Eckert, J.; Zhang, Z.F. Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects. Mater. Sci. Eng. A 2012, 534, 365–373. [Google Scholar] [CrossRef]
- Li, W.D.; Bei, H.B.; Gao, Y.F. Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses. Intermetallics 2016, 79, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Chan, K.C.; Xia, L. Deformation behavior of bulk metallic glass structural elements. Mater. Sci. Eng. A 2014, 606, 196–204. [Google Scholar] [CrossRef]
- Qu, R.T.; Zhang, Q.S.; Zhang, Z.F. Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment. Scripta Mater. 2013, 68, 845–848. [Google Scholar] [CrossRef]
- Scudino, S.; Bian, J.J.; Shahabi, H.S.; Sopu, D.; Sort, J.; Eckert, J.; Liu, G. Ductile bulk metallic glass by controlling structural heterogeneities. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Dong, J.; Huan, Y.; Wang, Y.T.; Wang, W.H. Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass. Sci. Rep. 2016, 6, 21929. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Gao, M.; Huan, Y.; Feng, Y.H.; Liu, W.; Wang, W.H. Enhanced tensile plasticity of Zr based bulk metallic glasses by a stress induced large scale flow. J. Alloys Compd. 2017, 727, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.F.; Zhang, Z.F.; Shen, J.; Mao, S.X. Shear deformation and plasticity of metallic glass under multiaxial loading. Acta Mater. 2008, 56, 894–904. [Google Scholar] [CrossRef]
- Jana, S.; Ramamurty, U.; Chattopadhyay, K.; Kawamura, Y. Subsurface deformation during vickers indentation of bulk metallic glasses. Mater. Sci. Eng. A 2004, 375, 1191–1195. [Google Scholar] [CrossRef]
- Schuh, C.A.; Nieh, T.G. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 2003, 51, 87–99. [Google Scholar] [CrossRef]
- Schuh, C.A.; Argon, A.S.; Nieh, T.G.; Wadsworth, J. The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 2003, 83, 2585–2597. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Chan, K.C.; Wu, F.F.; Xia, L. Achieving high energy absorption capacity in cellular bulk metallic glasses. Sci. Rep. 2015, 5, 10302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, K.M.; Dauskardt, R.H. Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater. 2001, 49, 2527–2537. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.T.; Pan, J.; Li, Y.; Schuh, C.A. Densification and strain hardening of a metallic glass under tension at room temperature. Phys. Rev. Lett. 2013, 111, 135504. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Wang, Y.X.; Li, Y. Ductile fracture in notched bulk metallic glasses. Acta Mater. 2017, 136, 126–133. [Google Scholar] [CrossRef]
- Gu, X.W.; Jafary-Zadeh, M.; Chen, D.Z.; Wu, Z.X.; Zhang, Y.W.; Srolovitz, D.J.; Greer, J.R. Mechanisms of failure in nanoscale metallic glass. Nano Lett. 2014, 14, 5858–5864. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.L.; Tian, L.; Zhang, D.L.; Dao, M.; Shan, Z.W.; Hsia, K.J. Effects of notches on the deformation behavior of submicron sized metallic glasses: Insights from in situ experiments. Acta Mater. 2018, 154, 172–181. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, H.F.; Wang, Z.T.; Li, Y.; Gao, H.J. Origin of anomalous inverse notch effect in bulk metallic glasses. J. Mech. Phys. Solids 2015, 84, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Lesz, S.; Griner, S.; Nowosielski, R. Deformation mechanisms and fracture of Ni-based metallic glasses. Arch. Metall. Mater. 2016, 61, 791–795. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.M.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230. [Google Scholar] [CrossRef]
- Carroll, R.; Lee, C.; Tsai, C.W.; Yeh, J.W.; Antonaglia, J.; Brinkman, B.A.W.; LeBlanc, M.; Xie, X.; Chen, S.Y.; Liaw, P.K.; et al. Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys. Sci. Rep. 2015, 5, 16997. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.F.; Liu, C.T.; Yang, Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 2015, 94, 152–161. [Google Scholar] [CrossRef]
- Joseph, J.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy. Scr. Mater. 2017, 129, 30–34. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wang, J.; Xia, L.; Wu, Y. Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review. Entropy 2019, 21, 54. https://doi.org/10.3390/e21010054
Chen S, Wang J, Xia L, Wu Y. Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review. Entropy. 2019; 21(1):54. https://doi.org/10.3390/e21010054
Chicago/Turabian StyleChen, Shunhua, Jingyuan Wang, Lei Xia, and Yucheng Wu. 2019. "Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review" Entropy 21, no. 1: 54. https://doi.org/10.3390/e21010054
APA StyleChen, S., Wang, J., Xia, L., & Wu, Y. (2019). Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review. Entropy, 21(1), 54. https://doi.org/10.3390/e21010054