Next Article in Journal
Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing
Previous Article in Journal
Spatio–Temporal Pattern of the Urban System Network in the Huaihe River Basin Based on Entropy Theory
Previous Article in Special Issue
Quantification and Analysis of the Irreversible Flow Loss in a Linear Compressor Cascade
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Entropy 2019, 21(1), 21; https://doi.org/10.3390/e21010021

Entropy Analysis of the Flat Tip Leakage Flow with Delayed Detached Eddy Simulation

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
*
Author to whom correspondence should be addressed.
Received: 15 November 2018 / Revised: 16 December 2018 / Accepted: 24 December 2018 / Published: 28 December 2018
(This article belongs to the Special Issue Entropy in Computational Fluid Dynamics II )
Full-Text   |   PDF [8811 KB, uploaded 28 December 2018]   |  

Abstract

In unshrouded turbine rotors, the tip leakage vortices develop and interact with the passage vortices. Such complex leakage flow causes the major loss in the turbine stage. Due to the complex turbulence characteristics of the tip leakage flow, the widely used Reynolds Averaged Navier–Stokes (RANS) approach may fail to accurately predict the multi-scale turbulent flow and the related loss. In order to effectively improve the turbine efficiency, more insights into the loss mechanism are required. In this work, a Delayed Detached Eddy Simulation (DDES) study is conducted to simulate the flow inside a high pressure turbine blade, with emphasis on the tip region. DDES results are in good agreement with the experiment, and the comparison with RANS results verifies the advantages of DDES in resolving detailed flow structures of leakage flow, and also in capturing the complex turbulence characteristics. The snapshot Proper Orthogonal Decomposition (POD) method is used to extract the dominant flow features. The flow structures and the distribution of turbulent kinetic energy reveal the development of leakage flow and its interaction with the secondary flow. Meanwhile, it is found that the separation bubble (SB) is formed in tip clearance. The strong interactions between tip leakage vortex (TLV) and the up passage vortex (UPV) are the main source of unsteady effects which significantly enhance the turbulence intensity. Based on the DDES results, loss analysis of tip leakage flow is conducted based on entropy generation rates. It is found that the viscous dissipation loss is much stronger than heat transfer loss. The largest local loss occurs in the tip clearance, and the interaction between the leakage vortex and up passage vortex promotes the loss generation. The tip leakage flow vortex weakens the strength of up passage vortex, and loss of up passage flow is reduced. Comparing steady and unsteady effects to flow field, we found that unsteady effects of tip leakage flow have a large influence on flow loss distribution which cannot be ignored. To sum up, the current DDES study about the tip leakage flow provides helpful information about the loss generation mechanism and may guide the design of low-loss blade tip. View Full-Text
Keywords: flat tip; leakage flow; turbulence structures; loss analysis; DDES flat tip; leakage flow; turbulence structures; loss analysis; DDES
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Li, H.; Su, X.; Yuan, X. Entropy Analysis of the Flat Tip Leakage Flow with Delayed Detached Eddy Simulation. Entropy 2019, 21, 21.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top