Symmetric Logarithmic Derivative of Fermionic Gaussian States
Abstract
1. Introduction
2. Fermionic Gaussian State
3. Symmetric Logarithmic, Derivative of Fermionic Gaussian States
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946; p. 575. [Google Scholar]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Katori, H. Optical lattice clocks and quantum metrology. Nat. Photonics 2011, 5, 203–210. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Aspachs, M.; Adesso, G.; Fuentes, I. Optimal Quantum Estimation of the Unruh-Hawking Effect. Phys. Rev. Lett. 2010, 105, 151301. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Bruschi, D.E.; Fuentes, I. Quantum metrology for relativistic quantum fields. Phys. Rev. D 2014, 89, 065028. [Google Scholar] [CrossRef]
- Schnabel, R.; Mavalvala, N.; McClelland, D.E.; Lam, P.K. Quantum metrology for gravitational wave astronomy. Nat. Commun. 2010, 1, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 2013, 7, 613–619. [Google Scholar] [CrossRef]
- Correa, L.A.; Mehboudi, M.; Adesso, G.; Sanpera, A. Individual Quantum Probes for Optimal Thermometry. Phys. Rev. Lett. 2015, 114, 220405. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, A.; Rossini, D.; Fazio, R.; Giovannetti, V. Local quantum thermal susceptibility. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.; Gefen, T.; Stürner, F.M.; Unden, T.; Wolff, G.; Müller, C.; Scheuer, J.; Naydenov, B.; Markham, M.; Pezzagna, S.; et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 2017, 356, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Boss, J.M.; Cujia, K.S.; Zopes, J.; Degen, C.L. Quantum sensing with arbitrary frequency resolution. Science 2017, 356, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Tsang, M.; Nair, R.; Lu, X.M. Quantum Theory of Superresolution for Two Incoherent Optical Point Sources. Phys. Rev. X 2016, 6, 031033. [Google Scholar] [CrossRef]
- Nair, R.; Tsang, M. Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit. Phys. Rev. Lett. 2016, 117, 190801. [Google Scholar] [CrossRef] [PubMed]
- Lupo, C.; Pirandola, S. Ultimate Precision Bound of Quantum and Subwavelength Imaging. Phys. Rev. Lett. 2016, 117, 190802. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Bowen, W.P. Quantum metrology and its application in biology. Phys. Rep. 2016, 615, 1–59. [Google Scholar] [CrossRef]
- Bonato, C.; Blok, M.S.; Dinani, H.T.; Berry, D.W.; Markham, M.L.; Twitchen, D.J.; Hanson, R. Optimized quantum sensing with a single electron spin using real-time adaptive measurements. Nat. Nanotechnol. 2016, 11, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Barthel, T. Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems. Phys. Rev. Lett. 2013, 111, 150403. [Google Scholar] [CrossRef] [PubMed]
- Kómár, P.; Kessler, E.M.; Bishof, M.; Jiang, L.; Sørensen, A.S.; Ye, J.; Lukin, M.D. A quantum network of clocks. Nat. Phys. 2014, 10, 582–587. [Google Scholar] [CrossRef]
- Dowling, J.P.; Seshadreesan, K.P. Quantum Optical Technologies for Metrology, Sensing, and Imaging. J. Light. Technol. 2015, 33, 2359–2370. [Google Scholar] [CrossRef]
- Boto, A.N.; Kok, P.; Abrams, D.S.; Braunstein, S.L.; Williams, C.P.; Dowling, J.P. Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit. Phys. Rev. Lett. 2000, 85, 2733–2736. [Google Scholar] [CrossRef] [PubMed]
- Caves, C.M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1693–1708. [Google Scholar] [CrossRef]
- Huelga, S.F.; Macchiavello, C.; Pellizzari, T.; Ekert, A.K.; Plenio, M.B.; Cirac, J.I. Improvement of Frequency Standards with Quantum Entanglement. Phys. Rev. Lett. 1997, 79, 3865–3868. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum metrology. Phys. Rev. Lett. 2006, 96, 010401. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.G.A. Quantum Estimation For Quantum Technology. Int. J. Quantum Inf. 2009, 7, 125–137. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Toth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 2014, 47, 1–39. [Google Scholar] [CrossRef]
- Szczykulska, M.; Baumgratz, T.; Datta, A. Multi-parameter quantum metrology. Adv. Phys. X 2016, 1, 621–639. [Google Scholar] [CrossRef]
- Pezzè, L.; Smerzi, A.; Oberthaler, M.K.; Schmied, R.; Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. arXiv, 2016; arXiv:quant-ph/1609.01609. [Google Scholar]
- Nichols, R.; Liuzzo-Scorpo, P.; Knott, P.A.; Adesso, G. Multiparameter Gaussian Quantum Metrology. arXiv, 2017; arXiv:quant-ph/1711.09132. [Google Scholar]
- Fraïsse, J.M.E.; Braun, D. Enhancing sensitivity in quantum metrology by Hamiltonian extensions. Phys. Rev. A 2017, 95, 062342. [Google Scholar] [CrossRef]
- Napoli, C.; Tufarelli, T.; Piano, S.; Leach, R.K.; Adesso, G. Towards superresolution surface metrology: Quantum estimation of angular and axial separations. arXiv, 2018; arXiv:quant-ph/1805.04116. [Google Scholar]
- Braun, D.; Adesso, G.; Benatti, F.; Floreanini, R.; Marzolino, U.; Mitchell, M.W.; Pirandola, S. Quantum enhanced measurements without entanglement. arXiv, 2017; arXiv:quant-ph/1701.05152. [Google Scholar]
- Humphreys, P.C.; Barbieri, M.; Datta, A.; Walmsley, I.A. Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 2013, 111, 070403. [Google Scholar] [CrossRef] [PubMed]
- Baumgratz, T.; Datta, A. Quantum Enhanced Estimation of a Multidimensional Field. Phys. Rev. Lett. 2016, 116, 030801. [Google Scholar] [CrossRef] [PubMed]
- Pezzè, L.; Ciampini, M.A.; Spagnolo, N.; Humphreys, P.C.; Datta, A.; Walmsley, I.A.; Barbieri, M.; Sciarrino, F.; Smerzi, A. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. Phys. Rev. Lett. 2017, 119, 130504. [Google Scholar] [CrossRef] [PubMed]
- Apellaniz, I.; Urizar-Lanz, I.; Zimborás, Z.; Hyllus, P.; Tóth, G. Precision bounds for gradient magnetometry with atomic ensembles. Phys. Rev. A 2018, 97, 053603. [Google Scholar] [CrossRef]
- Zanardi, P.; Paris, M.G.A.; Campos Venuti, L. Quantum criticality as a resource for quantum estimation. Phys. Rev. A 2008, 78, 042105. [Google Scholar] [CrossRef]
- Carollo, A.C.M.; Pachos, J.K. Geometric Phases and Criticality in Spin-Chain Systems. Phys. Rev. Lett. 2005, 95, 157203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.L. Scaling of Geometric Phases Close to the Quantum Phase Transition in the XY Spin Chain. Phys. Rev. Lett. 2006, 96, 077206. [Google Scholar] [CrossRef] [PubMed]
- Hamma, A. Berry Phases and Quantum Phase Transitions. arXiv, 2006; arXiv:quant-ph/0602091. [Google Scholar]
- Zanardi, P.; Paunković, N. Ground state overlap and quantum phase transitions. Phys. Rev. E 2006, 74, 031123. [Google Scholar] [CrossRef] [PubMed]
- Campos Venuti, L.; Zanardi, P. Quantum Critical Scaling of the Geometric Tensors. Phys. Rev. Lett. 2007, 99, 095701. [Google Scholar] [CrossRef] [PubMed]
- Campos Venuti, L.; Cozzini, M.; Buonsante, P.; Massel, F.; Bray-Ali, N.; Zanardi, P. Fidelity approach to the Hubbard model. Phys. Rev. B 2008, 78, 115410. [Google Scholar] [CrossRef]
- Zanardi, P.; Giorda, P.; Cozzini, M. Information-Theoretic Differential Geometry of Quantum Phase Transitions. Phys. Rev. Lett. 2007, 99, 100603. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, P.; Campos Venuti, L.; Giorda, P. Bures metric over thermal state manifolds and quantum criticality. Phys. Rev. A 2007, 76, 062318. [Google Scholar] [CrossRef]
- Garnerone, S.; Jacobson, N.T.; Haas, S.; Zanardi, P. Fidelity Approach to the Disordered Quantum XY Model. Phys. Rev. Lett. 2009, 102, 057205. [Google Scholar] [CrossRef] [PubMed]
- Rezakhani, A.T.; Abasto, D.F.; Lidar, D.A.; Zanardi, P. Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions. Phys. Rev. A 2010, 82, 012321. [Google Scholar] [CrossRef]
- Banchi, L.; Giorda, P.; Zanardi, P. Quantum information-geometry of dissipative quantum phase transitions. Phys. Rev. E 2014, 89, 022102. [Google Scholar] [CrossRef] [PubMed]
- Marzolino, U.; Prosen, T. Quantum metrology with nonequilibrium steady states of quantum spin chains. Phys. Rev. A 2014, 90, 062130. [Google Scholar] [CrossRef]
- Kolodrubetz, M.; Sels, D.; Mehta, P.; Polkovnikov, A. Geometry and non-adiabatic response in quantum and classical systems. Phys. Rep. 2017, 697, 1–87. [Google Scholar] [CrossRef]
- Carollo, A.; Spagnolo, B.; Valenti, D. Uhlmann curvature in dissipative phase transitions. arXiv, 2018; arXiv:quant-ph/1710.07560. [Google Scholar]
- Marzolino, U.; Prosen, T. Fisher information approach to nonequilibrium phase transitions in a quantum XXZ spin chain with boundary noise. Phys. Rev. B 2017, 96, 104402. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of Statistical Signal Processing; Prentice-Hall PTR: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Cox, D.R.; Reid, N. Parameter Orthogonality and Approximate Conditional Inference. J. R. Stat. Soc. Ser. B 1987, 49, 1–39. [Google Scholar]
- Holevo, A. Probabilistic and Statistical Aspects of Quantum Theory; Edizioni della Normale: Pisa, Italy, 2011. [Google Scholar] [CrossRef]
- Hayashi, M.; Matsumoto, K. Asymptotic performance of optimal state estimation in qubit system. J. Math. Phys. 2008, 49, 102101. [Google Scholar] [CrossRef]
- Kahn, J.; Guţă, M.I. Local Asymptotic Normality for Finite Dimensional Quantum Systems. Commun. Math. Phys. 2009, 289, 597–652. [Google Scholar] [CrossRef]
- Gill, R.D.; Guţă, M.I. On asymptotic quantum statistical inference. In From Probability to Statistics and Back: High-Dimensional Models and Processes—A Festschrift in Honor of Jon A. Wellner; Institute of Mathematical Statistics: Beachwood, OH, USA, 2013. [Google Scholar]
- Yamagata, K.; Fujiwara, A.; Gill, R.D. Quantum local asymptotic normality based on a new quantum likelihood ratio. Ann. Stat. 2013, 41, 2197–2217. [Google Scholar] [CrossRef]
- Ragy, S.; Jarzyna, M.; Demkowicz-Dobrzański, R. Compatibility in multiparameter quantum metrology. Phys. Rev. A 2016, 94, 052108. [Google Scholar] [CrossRef]
- Bach, V.; Lieb, E.H.; Solovej, J.P. Generalized Hartree-Fock theory and the Hubbard model. J. Stat. Phys. 1994, 76, 3–89. [Google Scholar] [CrossRef]
- Jiang, Z. Quantum Fisher information for states in exponential form. Phys. Rev. A 2014, 89, 032128. [Google Scholar] [CrossRef]
- Wilcox, R.M. Exponential Operators and Parameter Differentiation in Quantum Physics. J. Math. Phys. 1967, 8, 962–982. [Google Scholar] [CrossRef]
- Šafránek, D. Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 2017, 95, 052320. [Google Scholar] [CrossRef]
- Knott, P.A. A search algorithm for quantum state engineering and metrology. New J. Phys. 2016, 18, 073033. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carollo, A.; Spagnolo, B.; Valenti, D. Symmetric Logarithmic Derivative of Fermionic Gaussian States. Entropy 2018, 20, 485. https://doi.org/10.3390/e20070485
Carollo A, Spagnolo B, Valenti D. Symmetric Logarithmic Derivative of Fermionic Gaussian States. Entropy. 2018; 20(7):485. https://doi.org/10.3390/e20070485
Chicago/Turabian StyleCarollo, Angelo, Bernardo Spagnolo, and Davide Valenti. 2018. "Symmetric Logarithmic Derivative of Fermionic Gaussian States" Entropy 20, no. 7: 485. https://doi.org/10.3390/e20070485
APA StyleCarollo, A., Spagnolo, B., & Valenti, D. (2018). Symmetric Logarithmic Derivative of Fermionic Gaussian States. Entropy, 20(7), 485. https://doi.org/10.3390/e20070485