# A Lenient Causal Arrow of Time?

## Abstract

**:**

## 1. Introduction

## 2. Retrocausal Toy-Models

#### 2.1. A Simplistic Toy-Model

#### 2.2. Hall’s Toy-Model

#### 2.3. Criticism of the Superdeterministic Approach

- (i)
- $a$ and $b$ are free variables;
- (iI)
- The causal arrow of time, with $\lambda $ associated with a time earlier than that of $a$ and $b$.

## 3. Toward a General Retrocausal Theory

## 4. Summary and Discussion

The unlikelihood of finding a sharp answer to this question [the measurement problem] reminds me of the relation of thermodynamics to fundamental theory. The more closely one looks at the fundamental laws of physics the less one sees of the laws of thermodynamics. The increase of entropy emerges only for large complicated systems, in an approximation depending on “largeness” and “complexity.” Could it be that causal structure emerges only in something like a “thermodynamic” approximation, where the notions “measurement” and “external field” become legitimate approximations? Maybe that is part of the story, but I do not think it can be all. Local commutativity does not for me have a thermodynamic air about it. It is a challenge now to couple it with sharp internal concepts, rather than vague external ones.

## Acknowledgments

## Conflicts of Interest

## References

- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**1935**, 47, 777–780. [Google Scholar] [CrossRef] - Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics
**1964**, 1, 195–200. [Google Scholar] [CrossRef] - Bell, J.S. The theory of local beables. Epistemol. Lett.
**1976**, 9, 11–24, Reproduced in Dialetica**1985**, 39, 86–96. [Google Scholar] [CrossRef] - Bell, J.S. Bertlmann’s socks and the nature of reality. J. Phys.
**1981**, 42, C2-41–C2-62. [Google Scholar] [CrossRef] - Bell, J.S. La nouvelle cuisine. In Between Science and Technology; Sarlemijn, A., Kroes, P., Eds.; Elsevier/North-Holland: New York, NY, USA; Amsterdam, The Netherlands, 1990; pp. 97–115. [Google Scholar]
- Bell, J.S. Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bell, J.S.; Bell, M.; Gottfried, K.; Veltman, M. John S. Bell on the Foundations of Quantum Mechanics; World Scientific: Singapore, 2001. [Google Scholar]
- Price, H. Agency and causal asymmetry. Mind
**1992**, 101, 501–520. [Google Scholar] [CrossRef] - Wharton, K. Time-symmetric boundary conditions and quantum foundations. Symmetry
**2010**, 2, 272–283. [Google Scholar] [CrossRef] - Bell, J.S. How to teach special relativity. Prog. Sci. Cult.
**1976**, 1, 1–13. [Google Scholar] - Wiseman, H.M. The two Bell’s theorems of John Bell. J. Phys. A Math. Theor.
**2014**, 47, 424001. [Google Scholar] [CrossRef] - Norsen, T. Are there really two different Bell’s theorems? Int. J. Quantum Found.
**2015**, 1, 65–84. [Google Scholar] - Costa de Beauregard, O. Une réponse à l’argument dirigé par Einstein, Podolsky et Rosen contre l’interprétation bohrienne des phénomènes quantiques. C. R. Acad. Sci.
**1953**, 236, 1632–1634. (In French) [Google Scholar] - Cramer, J.G. Generalized absorber theory and the Einstein-Podolsky-Rosen paradox. Phys. Rev. D
**1980**, 22, 362–376. [Google Scholar] [CrossRef] - Price, H. Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Argaman, N. Bell’s theorem and the causal arrow of time. Am. J. Phys.
**2010**, 78, 1007–1013. [Google Scholar] [CrossRef] - Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev.
**1952**, 85, 166–179. [Google Scholar] [CrossRef] - Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev.
**1952**, 85, 180–193. [Google Scholar] [CrossRef] - Bell, J.S. On the impossible pilot wave. Found. Phys.
**1982**, 12, 989–999. [Google Scholar] [CrossRef] - Bohm, D. Causality and Chance in Modern Physics; D. van Nostrand Co., Inc.: Princeton, NJ, USA, 1957. [Google Scholar]
- Nelson, E. Review of stochastic mechanics. J. Phys. Conf. Ser.
**2011**, 361, 012011. [Google Scholar] [CrossRef] - Rosenfeld, W.; Burchardt, D.; Garthoff, R.; Redeker, K.; Ortegel, N.; Rau, M.; Weinfurter, H. Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett.
**2017**, 119, 010402. [Google Scholar] [CrossRef] [PubMed] - Stapp, H.P. Nonlocal character of quantum theory. Am. J. Phys.
**1997**, 65, 300–303. [Google Scholar] [CrossRef] - Hall, M.J.W. Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett.
**2010**, 105, 250404, Erratum in**2016**, 116, 219902, doi:10.1103/PhysRevLett.116.219902. [Google Scholar] [CrossRef] [PubMed] - Leifer, M.S. Is the quantum state real? An extended review of ψ-ontology theorems. Quanta
**2014**, 3, 67–155. [Google Scholar] [CrossRef] - Aspect, A.; Dalibard, J.; Roger, J. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett.
**1982**, 49, 1804–1807. [Google Scholar] [CrossRef] - Almada, D.; Ch’ng, K.; Kintner, S.; Morrison, B.; Wharton, K.B. Are retrocausal accounts of entanglement unnaturally fine-tuned? Int. J. Quantum Found.
**2016**, 2, 1–16. [Google Scholar] - Buks, E.; Schuster, R.; Heiblum, M.; Mahalu, D.; Umansky, V. Dephasing due to which path detector. Phys. B Condens. Matter
**1998**, 249–251, 295–301. [Google Scholar] [CrossRef] - Hall, M.J.W. The significance of measurement independence for Bell inequalities and locality. In At the Frontier of Spacetime; Asselmeyer-Maluga, T., Ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Hall, M.J.W. Relaxed Bell inequalities and Kochen-Specker theorems. Phys. Rev. A
**2011**, 84, 022102. [Google Scholar] [CrossRef] - Shimony, A.; Horne, M.A.; Clauser, J.F. Comment on “The theory of local beables”. Epistemol. Lett.
**1976**, 13, 1–8, Reproduced in Dialectica**1985**, 39, 97–102. [Google Scholar] [CrossRef] - Bell, J.S. Free variables and local causality. Epistemol. Lett.
**1977**, 15, 79–84, Reproduced in Dialectica**1985**, 39, 103–106. [Google Scholar] [CrossRef] - Handsteiner, J.; Friedman, A.S.; Rauch, D.; Gallicchio, J.; Liu, B.; Hosp, H.; Kofler, J.; Bricher, D.; Fink, M.; Leung, C.; et al. Cosmic Bell test: Measurement settings from milky way stars. Phys. Rev. Lett.
**2017**, 118, 060401. [Google Scholar] [CrossRef] [PubMed] - ‘t Hooft, G. The Cellular Automaton Interpretation of Quantum Mechanics; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Feynman, R.P.; Hibbs, A.R.; Styer, D.F. Quantum Mechanics and Path Integrals, Emended ed.; Dover: Mineola, NY, USA, 2010. [Google Scholar]
- Griffiths, R.B. Consistent Quantum Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Damgaard, P.; Huffel, H. Stochastic quantization. Phys. Rep.
**1987**, 152, 227–398. [Google Scholar] [CrossRef] - Argaman, N. On Bell’s theorem and causality. arXiv, 2008; arXiv:0807.2041v1. [Google Scholar]
- Caldeira, A.O.; Leggett, A.J. Quantum tunnelling in a dissipative system. Ann. Phys.
**1983**, 149, 374–456. [Google Scholar] [CrossRef] - Daffertshofer, A.; Plastino, A.R.; Plastino, A. Classical no-cloning theorem. Phys. Rev. Lett.
**2002**, 88, 210601. [Google Scholar] [CrossRef] [PubMed] - Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.
**2003**, 75, 715–775. [Google Scholar] [CrossRef] - Wharton, K. Quantum states as ordinary information. Information
**2014**, 5, 190–208. [Google Scholar] [CrossRef] - Pawlowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Zukowski, M. Information causality as a physical principle. Nature
**2009**, 461, 1101–1104. [Google Scholar] [CrossRef] [PubMed] - Cirel’son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys.
**1980**, 4, 93–100. [Google Scholar] [CrossRef] - Price, H. Two Paths to the Parisian Zigzag. Available online: http://emqm17.org/presentations/Huw-Price/ (accessed on 30 March 2018).
- Wharton, K. Live Options for Spacetime-Based Physics. Available online: http://emqm17.org/ presentations/Kenneth-Wharton/ (accessed on 30 March 2018).
- Adlam, E. A Tale of Two Anachronisms. Available online: http://emqm17.org/presentations/emily-adlam/ (accessed on 30 March 2018).
- Walleczek, J. Nonlocality or Local Retrocausality?—The Non-Signalling Theorem in Ontological Quantum Mechanics. Available online: http://emqm17.org/presentations/Jan-Walleczek-2/ (accessed on 30 March 2018).
- Adlam, E. Spooky action at a temporal distance. Entropy
**2018**, 20, 41. [Google Scholar] [CrossRef]

**Figure 1.**Sketch of a spacetime region permeated by fluctuating fields, with an external perturbation applied at times near ${t}_{1}$, and with the field configuration at an early time, ${t}_{0}$, fixed as initial conditions. If the fields are described by a deterministic theory, the field configurations before ${t}_{1}$ are unaffected by the external perturbation; in contrast, for stochastic theories the probability distribution of the fields at times between ${t}_{0}$ and ${t}_{1}$, indicated by the filled ovals, may depend on the perturbation. Nevertheless, the firing rate of a “detector” placed at or near these ovals must not depend on the perturbation (or else the no-signaling condition would be violated).

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Argaman, N.
A Lenient Causal Arrow of Time? *Entropy* **2018**, *20*, 294.
https://doi.org/10.3390/e20040294

**AMA Style**

Argaman N.
A Lenient Causal Arrow of Time? *Entropy*. 2018; 20(4):294.
https://doi.org/10.3390/e20040294

**Chicago/Turabian Style**

Argaman, Nathan.
2018. "A Lenient Causal Arrow of Time?" *Entropy* 20, no. 4: 294.
https://doi.org/10.3390/e20040294