# The Second Law of Thermodynamics as a Force Law

## Abstract

**:**

## 1. Introduction

## 2. General Approach

## 3. Results

#### 3.1. Microcanonical Ensemble: The Force Law and the Increase of Entropy

#### 3.2. Isobaric-Isothermal Ensemble: The Force Law and the Decrease of Gibbs Energy

#### 3.3. Concluding Remarks

## 4. Discussion

## Acknowledgments

## Conflicts of Interest

## References

- Clausius, R. Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. [On several convenient forms of the fundamental equations of the mechanical theory of heat]. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich
**1865**, 10, 1–59. (In German) [Google Scholar] - McQuarrie, D.A. Statistical Mechanics; University Science Books: Sausalito, CA, USA, 2000. [Google Scholar]
- Schlitter, J. The increase of entropy upon release of a constraint in classical systems. Mol. Phys.
**2006**, 104, 2829–2834. [Google Scholar] [CrossRef] - Gedde, U.W. Polymer Physics; Springer Science+Business Media: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Steinhoff, H.J.; Schlitter, J.; Redhardt, A.; Husmeier, D.; Zander, N. Structural Fluctuations and Conformational Entropy in Proteins—Entropy Balance in an Intramolecular Reaction in Methemoglobin. Biochim. Biophys. Acta
**1992**, 1121, 189–198. [Google Scholar] [CrossRef] - Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature
**2005**, 437, 640–647. [Google Scholar] [CrossRef] [PubMed] - Schlitter, J. Constraint methods for determining pathways and free energy of activated processes. Eur. Phys. J. Spec. Top.
**2011**, 200, 91–105. [Google Scholar] [CrossRef] - Van Gunsteren, W.F. Methods for calculation of free energies and binding costants: Successes and problems. In Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications; van Gunsteren, W.F., Weiner, P.K., Eds.; ESCOM: Leiden, The Netherlands, 1989; Volume 1. [Google Scholar]
- Chipot, C.; Pohorille, A. Free Energy Calculations; Springer: Berlin, Germany, 2007. [Google Scholar]
- Reichl, L.E. A Modern Course in Statistical Physics; Edward Arnold: London, UK, 1980. [Google Scholar]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Mulders, T.; Kruger, P.; Swegat, W.; Schlitter, J. Free energy as the potential of mean constraint force. J. Chem. Phys.
**1996**, 104, 4869–4870. [Google Scholar] [CrossRef] - Schlitter, J.; Klähn, M. A new concise expression for the free energy of a reaction coordinate. J. Chem. Phys.
**2003**, 118, 2057–2060. [Google Scholar] [CrossRef] - Schlitter, J.; Swegat, W.; Mulders, T. Distance-type reaction coordinates for modelling activated processes. J. Mol. Model.
**2001**, 7, 171–177. [Google Scholar] [CrossRef] - Atkins, P. Physical Chemistry; W.H. Freeman & Company: New York, NY, USA, 1996. [Google Scholar]
- Truhlar, D.G. Transition state theory for enzyme kinetics. Arch. Biochem. Biophys.
**2015**, 582, 10–17. [Google Scholar] [CrossRef] [PubMed] - Schlitter, J. Estimation of Absolute and Relative Entropies of Macromolecules Using the Covariance-Matrix. Chem. Phys. Lett.
**1993**, 215, 617–621. [Google Scholar] [CrossRef] - Piquemal, J.P.; Jordan, K.D. Preface: Special Topic: From Quantum Mechanics to Force Fields. J. Chem. Phys.
**2017**, 147, 161401. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Pathways including state A. For possible processes, the arrows show the preferential direction that can be derived from the second law of thermodynamics or the new force law.

**Figure 2.**Alternative pathways from A to B (left) with respective profiles of the potential of mean force. In either case, the identical decrease of the potential of mean force (PMF) implies that the average mean force—i.e., the negative derivative—along the path is positive and drives the motion from A to B. Likewise, the positive average mean force implies the decrease of the PMF.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Schlitter, J. The Second Law of Thermodynamics as a Force Law. *Entropy* **2018**, *20*, 234.
https://doi.org/10.3390/e20040234

**AMA Style**

Schlitter J. The Second Law of Thermodynamics as a Force Law. *Entropy*. 2018; 20(4):234.
https://doi.org/10.3390/e20040234

**Chicago/Turabian Style**

Schlitter, Jürgen. 2018. "The Second Law of Thermodynamics as a Force Law" *Entropy* 20, no. 4: 234.
https://doi.org/10.3390/e20040234