Bayesian 3D X-ray Computed Tomography with a Hierarchical Prior Model for Sparsity in Haar Transform Domain
Abstract
:1. Introduction
2. The Semi-Supervised Hierarchical Model
2.1. Forward System Model and Likelihood
2.2. Hierarchical Prior Model and Prior Distributions
2.3. The HHBM Method
2.4. Joint Maximum a Posteriori Estimation
Algorithm 1 The JMAP Algorithm for the HHBM Method |
|
3. Initialization and Experimental Results
- the Relative Mean Squared Error (RMSE), RMSE = , which shows a relative error of the results;
- the Improvement of the Signal-to-Noise Ratio (ISNR), which measures the improvement during iterations;
- the Peak Signal-to-Noise-Ratio (PSNR), which presents the SNR relative to the peak data value;
- the Structural Similarity of IMage (SSIM) [62], which evaluates the quality of the result approaching human vision.
3.1. Initializations
3.2. Simulation Results with a Limited Number of Projections
3.3. Simulation Results with a Limited Angle of Projections
3.4. Simulation with a Different Forward Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arridge, S.R. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41. [Google Scholar] [CrossRef]
- Hanke, R.; Fuchs, T.; Uhlmann, N. X-ray based methods for non-destructive testing and material characterization. Nucl. Instrum. Methods Phys. Res. Sect. A 2008, 591, 14–18. [Google Scholar] [CrossRef]
- Kalender, W.A. X-ray Computed Tomography. Phys. Med. Biol. 2006, 51, R29. [Google Scholar] [CrossRef] [PubMed]
- Natterer, F.; Wubbeling, F. A propagation-backpropagation method for ultrasound tomography. Inverse Probl. 1995, 11, 1225. [Google Scholar] [CrossRef]
- Bolomey, J.C.; Pichot, C. Microwave tomography: From theory to practical imaging systems. Int. J. Imaging Syst. Technol. 1990, 2, 144–156. [Google Scholar] [CrossRef]
- Nelson, J.; Milner, T.; Tanenbaum, B.; Goodman, D.; Van Gemert, M. Infra-red tomography of port-wine-stain blood vessels in human skin. Lasers Med. Sci. 1996, 11, 199–204. [Google Scholar] [CrossRef]
- Deans, S.R. The Radon Transform and Some of Its Applications; Courier Corporation: Mineola, NY, USA, 2007. [Google Scholar]
- Feldkamp, L.; Davis, L.; Kress, J. Practical cone-beam algorithm. JOSA A 1984, 1, 612–619. [Google Scholar] [CrossRef]
- Alifanov, O.M.; Artioukhine, E.A.; Rumyantsev, S.V. Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems; Begell House: New York, NY, USA, 1995. [Google Scholar]
- O’Sullivan, F. A statistical perspective on ill-posed inverse problems. Stat. Sci. 1986, 1, 502–518. [Google Scholar] [CrossRef]
- Gordon, R. A tutorial on ART (algebraic reconstruction techniques). IEEE Trans. Nucl. Sci. 1974, 21, 78–93. [Google Scholar] [CrossRef]
- Gordon, R.; Bender, R.; Herman, G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 1970, 29, 471–481. [Google Scholar] [CrossRef]
- Andersen, A.H.; Kak, A.C. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. Ultrason. Imaging 1984, 6, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Trampert, J.; Leveque, J.J. Simultaneous iterative reconstruction technique: Physical interpretation based on the generalized least squares solution. J. Geophys. Res. 1990, 95, 553–559. [Google Scholar] [CrossRef]
- Bangliang, S.; Yiheng, Z.; Lihui, P.; Danya, Y.; Baofen, Z. The use of simultaneous iterative reconstruction technique for electrical capacitance tomography. Chem. Eng. J. 2000, 77, 37–41. [Google Scholar] [CrossRef]
- Coric, S.; Leeser, M.; Miller, E.; Trepanier, M. Parallel-beam backprojection: An FPGA implementation optimized for medical imaging. In Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 24–26 February 2002; pp. 217–226. [Google Scholar]
- Ay, M.R.; Zaidi, H. Development and validation of MCNP4C-based Monte Carlo simulator for fan-and cone-beam x-ray CT. Phys. Med. Biol. 2005, 50, 4863–4885. [Google Scholar] [CrossRef] [PubMed]
- Mozzo, P.; Procacci, C.; Tacconi, A.; Tinazzi Martini, P.; Bergamo Andreis, I. A new volumetric CT machine for dental imaging based on the cone-beam technique: Preliminary results. Eur. Radiol. 1998, 8, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Ben-Israel, A.; Greville, T.N. Generalized Inverses: Theory and Applications; Springer: New York, NY, USA, 2003; Volume 15. [Google Scholar]
- Calvetti, D.; Morigi, S.; Reichel, L.; Sgallari, F. Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 2000, 123, 423–446. [Google Scholar] [CrossRef]
- Chambolle, A.; Lions, P.L. Image recovery via total variation minimization and related problems. Numer. Math. 1997, 76, 167–188. [Google Scholar] [CrossRef]
- Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2009, 2, 323–343. [Google Scholar] [CrossRef]
- Sidky, E.Y.; Pan, X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 2008, 53, 4777. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.F.; Golub, G.H.; Mulet, P. A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 1999, 20, 1964–1977. [Google Scholar] [CrossRef]
- Wahlberg, B.; Boyd, S.; Annergren, M.; Wang, Y. An ADMM algorithm for a class of total variation regularized estimation problems. IFAC Proc. Vol. 2012, 45, 83–88. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Ramani, S.; Liu, Z.; Rosen, J.; Nielsen, J.F.; Fessler, J.A. Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods. IEEE Trans. Image Process. 2012, 21, 3659–3672. [Google Scholar] [CrossRef] [PubMed]
- Galatsanos, N.P.; Katsaggelos, A.K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans. Image Process. 1992, 1, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Schultz, L.; Qi, J. Statistical image reconstruction for muon tomography using a Gaussian scale mixture model. IEEE Trans. Nucl. Sci. 2009, 56, 2480–2486. [Google Scholar] [CrossRef]
- Redner, R.A.; Walker, H.F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 1984, 26, 195–239. [Google Scholar] [CrossRef]
- Moon, T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 1996, 13, 47–60. [Google Scholar] [CrossRef]
- Tregouet, D.; Escolano, S.; Tiret, L.; Mallet, A.; Golmard, J. A new algorithm for haplotype-based association analysis: The Stochastic-EM algorithm. Ann. Hum. Genet. 2004, 68, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Hudson, H.M.; Larkin, R.S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 1994, 13, 601–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chapman & Hall/CRC: Boca Raton, FL, USA, 2014; Volume 2. [Google Scholar]
- Bali, N.; Mohammad-Djafari, A. Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis. IEEE Trans. Image Process. 2008, 17, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Mohammad-Djafari, A. Joint estimation of parameters and hyperparameters in a Bayesian approach of solving inverse problems. In Proceedings of the 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 19 September 1996; Volume 2, pp. 473–476. [Google Scholar]
- Kolehmainen, V.; Vanne, A.; Siltanen, S.; Jarvenpaa, S.; Kaipio, J.P.; Lassas, M.; Kalke, M. Parallelized Bayesian inversion for three-dimensional dental X-ray imaging. IEEE Trans. Med. Imaging 2006, 25, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Leahy, R.M. Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans. Med. Imaging 2000, 19, 493–506. [Google Scholar] [PubMed]
- Ericson, W.A. A note on the posterior mean of a population mean. J. R. Stat. Soc. Ser. B 1969, 31, 332–334. [Google Scholar] [CrossRef]
- Fox, C.W.; Roberts, S.J. A tutorial on variational Bayesian inference. Artif. Intell. Rev. 2012, 38, 85–95. [Google Scholar] [CrossRef]
- Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 2008, 25, 131–146. [Google Scholar] [CrossRef]
- Ayasso, H.; Mohammad-Djafari, A. Joint NDT image restoration and segmentation using Gauss–Markov–Potts prior models and variational Bayesian computation. IEEE Trans. Image Process. 2010, 19, 2265–2277. [Google Scholar] [CrossRef] [PubMed]
- Noël, P.B.; Walczak, A.M.; Xu, J.; Corso, J.J.; Hoffmann, K.R.; Schafer, S. GPU-based cone beam computed tomography. Comput. Methods Programs Biomed. 2010, 98, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Gac, N.; Mancini, S.; Desvignes, M.; Houzet, D. High speed 3D tomography on CPU, GPU, and FPGA. EURASIP J. Embed. Syst. 2008, 2008, 930250. [Google Scholar] [CrossRef]
- Wang, L.; Mohammad-Djafari, A.; Gac, N.; Dumitru, M. Computed tomography reconstruction based on a hierarchical model and variational Bayesian method. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 883–887. [Google Scholar]
- Dumitru, M. A Bayesian Approach for Periodic Components Estimation for Chronobiological Signals. Ph.D. Thesis, Paris Saclay, Paris, France, 2016. [Google Scholar]
- Wang, L.; Mohammad-Djafari, A.; Gac, N. X-ray Computed Tomography using a sparsity enforcing prior model based on Haar transformation in a Bayesian framework. Fundam. Inform. 2017, 155, 449–480. [Google Scholar] [CrossRef]
- Stanković, R.S.; Falkowski, B.J. The Haar wavelet transform: Its status and achievements. Comput. Electr. Eng. 2003, 29, 25–44. [Google Scholar] [CrossRef]
- Starck, J.L.; Candès, E.J.; Donoho, D.L. The curvelet transform for image denoising. IEEE Trans. Image Process. 2002, 11, 670–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, M.N.; Vetterli, M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 2005, 14, 2091–2106. [Google Scholar] [CrossRef] [PubMed]
- Selesnick, I.W.; Baraniuk, R.G.; Kingsbury, N.C. The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 2005, 22, 123–151. [Google Scholar] [CrossRef] [Green Version]
- Nadarajah, S. A generalized normal distribution. J. Appl. Stat. 2005, 32, 685–694. [Google Scholar] [CrossRef]
- Rasmussen, C.E. The infinite Gaussian mixture model. Adv. Neural Inf. Process. Syst. 1999, 12, 554–560. [Google Scholar]
- Klebanov, L.B. Heavy Tailed Distributions; MatfFyzPress: Prague, Czech Republic, 2003. [Google Scholar]
- Frese, T.; Bouman, C.A.; Sauer, K. Adaptive wavelet graph model for Bayesian tomographic reconstruction. IEEE Trans. Image Process. 2002, 11, 756–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaney, A.H.; Bresler, Y. Multiresolution tomographic reconstruction using wavelets. IEEE Trans. Image Process. 1995, 4, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Rantala, M.; Vanska, S.; Jarvenpaa, S.; Kalke, M.; Lassas, M.; Moberg, J.; Siltanen, S. Wavelet-based reconstruction for limited-angle X-ray tomography. IEEE Trans. Med. Imaging 2006, 25, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Loris, I.; Nolet, G.; Daubechies, I.; Dahlen, F. Tomographic inversion using l1-norm regularization of wavelet coefficients. Geophys. J. Int. 2007, 170, 359–370. [Google Scholar] [CrossRef]
- Sauer, K.; Bouman, C. A local update strategy for iterative reconstruction from projections. IEEE Trans. Signal Process. 1993, 41, 534–548. [Google Scholar] [CrossRef] [Green Version]
- Elad, M.; Milanfar, P.; Rubinstein, R. Analysis versus synthesis in signal priors. Inverse Probl. 2007, 23, 947–968. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Palenstijn, W.J.; Batenburg, K.J.; Sijbers, J. The ASTRA tomography toolbox. In Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, Almeria, Spain, 24–27 June 2013; Volume 2013. [Google Scholar]
- Dumitru, M.; Wang, L.; Gac, N.; Mohammad-Djafari, A. iterTomoGPI-GPL, Gitlab Repository. April 2018. Available online: https://github.com/nicolasgac/TomoGPI_for_Astra (accessed on 16 April 2018).
- Figueiredo, M.A.; Nowak, R.D. Wavelet-based image estimation: An empirical Bayes approach using Jeffrey’s noninformative prior. IEEE Trans. Image Process. 2001, 10, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, M.; Wang, L.; Gac, N.; Mohammad-Djafari, A. Performance Comparison of Bayesian Iterative Algorithms for Three Classes of Sparsity Enforcing Priors With Application in Computed Tomography. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017. [Google Scholar]
Shepp–Logan Phantom | ||||||||||||
180 Projections | 90 Projections | |||||||||||
40 dB | 20 dB | 40 dB | 20 dB | |||||||||
QR | TV | HHBM | QR | TV | HHBM | QR | TV | HHBM | QR | TV | HHBM | |
60 Projections | 45 Projections | |||||||||||
40 dB | 20 dB | 40 dB | 20 dB | |||||||||
QR | TV | HHBM | QR | TV | HHBM | QR | TV | HHBM | QR | TV | HHBM | |
36 Projections | 18 Projections | |||||||||||
40 dB | 20 dB | 40 dB | 20 dB | |||||||||
QR | TV | HHBM | QR | TV | HHBM | QR | TV | HHBM | QR | TV | HHBM | |
RMSE | QR | TV | HHBM |
---|---|---|---|
180 proj | 0.0581 | 0.0540 | 0.0558 |
90 proj | 0.0655 | 0.0573 | 0.0610 |
60 proj | 0.0846 | 0.0675 | 0.0690 |
45 proj | 0.1079 | 0.0830 | 0.0783 |
36 proj | 0.1326 | 0.1027 | 0.0882 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Mohammad-Djafari, A.; Gac, N.; Dumitru, M. Bayesian 3D X-ray Computed Tomography with a Hierarchical Prior Model for Sparsity in Haar Transform Domain. Entropy 2018, 20, 977. https://doi.org/10.3390/e20120977
Wang L, Mohammad-Djafari A, Gac N, Dumitru M. Bayesian 3D X-ray Computed Tomography with a Hierarchical Prior Model for Sparsity in Haar Transform Domain. Entropy. 2018; 20(12):977. https://doi.org/10.3390/e20120977
Chicago/Turabian StyleWang, Li, Ali Mohammad-Djafari, Nicolas Gac, and Mircea Dumitru. 2018. "Bayesian 3D X-ray Computed Tomography with a Hierarchical Prior Model for Sparsity in Haar Transform Domain" Entropy 20, no. 12: 977. https://doi.org/10.3390/e20120977
APA StyleWang, L., Mohammad-Djafari, A., Gac, N., & Dumitru, M. (2018). Bayesian 3D X-ray Computed Tomography with a Hierarchical Prior Model for Sparsity in Haar Transform Domain. Entropy, 20(12), 977. https://doi.org/10.3390/e20120977