# Microscopic Theory of Energy Dissipation and Decoherence in Solid-State Quantum Devices: Need for Nonlocal Scattering Models

^{*}

## Abstract

**:**

**2017**, 96, 115420) of semiclassical (local) scattering models, extending such treatment to carrier–carrier interaction, and focusing in particular on the nonlocal character of Pauli-blocking contributions. In order to concretely show the intrinsic limitations of local scattering models, a few simulated experiments of energy dissipation and decoherence in a prototypical quantum-well semiconductor nanostructure are also presented.

## 1. Introduction

## 2. Semiclassical Scattering Models

## 3. Fully Quantum-Mechanical Scattering Models

## 4. Nonlocal Character of Pauli-Blocking Contributions

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Esaki, L.; Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev.
**1970**, 14, 61–65. [Google Scholar] [CrossRef] - Ihn, T. Semiconductor Nanostructures: Quantum States and Electronic Transport; OUP Oxford: Hong Kong, China, 2010. [Google Scholar]
- Capasso, F. Physics of Quantum Electron Devices; Springer Series in Electronics and Photonics; Springer: London, UK, 2011. [Google Scholar]
- Bastard, G. Wave Mechanics Applied to Semiconductor Heterostructures; Monographies de Physique, Les Éditions de Physique; John Wiley and Sons Inc.: New York, NY, USA, 1988. [Google Scholar]
- It is imperative to stress that, in spite of the intrinsic limitations of the semiclassical theory, in transport experiments—Characterized by strong energy dissipation and decoherence—It is hard to find clear indications of quantum-transport corrections.
- Jacoboni, C.; Lugli, P. The Monte Carlo Method for Semiconductor Device Simulation; Springer: Berlin, Germany, 1989. [Google Scholar]
- Frensley, W.R. Boundary-conditions for open quantum-systems driven far from equilibrium. Rev. Mod. Phys.
**1990**, 62, 745–791. [Google Scholar] [CrossRef] - Axt, V.M.; Mukamel, S. Nonlinear optics of semiconductor and molecular nanostructures; A common perspective. Rev. Mod. Phys.
**1998**, 70, 145–174. [Google Scholar] [CrossRef] - Datta, S. Nanoscale device modeling: The Green’s function method. Superlattices Microstruct.
**2000**, 28, 253–278. [Google Scholar] [CrossRef] - Rossi, F.; Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys.
**2002**, 74, 895–950. [Google Scholar] [CrossRef] - Axt, V.M.; Kuhn, T. Femtosecond spectroscopy in semiconductors: A key to coherences, correlations and quantum kinetics. Rep. Prog. Phys.
**2004**, 67, 433–512. [Google Scholar] [CrossRef] - Pecchia, A.; Di Carlo, A. Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys.
**2004**, 67, 1497–1561. [Google Scholar] [CrossRef] - Iotti, R.C.; Rossi, F. Microscopic theory of semiconductor-based optoelectronic devices. Rep. Prog. Phys.
**2005**, 68, 2533–2571. [Google Scholar] [CrossRef] - Kadanoff, L.; Baym, G. Quantum statistical mechanics: Green’s function methods in equilibrium and nonequilibrium problems. In Frontiers in Physics; W.A. Benjamin: San Francisco, CA, USA, 1962. [Google Scholar]
- Haug, H.; Jauho, A. Quantum Kinetics in Transport and Optics of Semiconductors; Springer: Berlin, Germany, 2007. [Google Scholar]
- Bonitz, M. Quantum Kinetic Theory; Teubner-Texte zur Physik, Teubner; Springer: Berlin, Germany, 1998. [Google Scholar]
- Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B
**2001**, 63, 245407. [Google Scholar] [CrossRef] [Green Version] - Faleev, S.V.; Léonard, F.M.C.; Stewart, D.A.; van Schilfgaarde, M. Ab initio tight-binding LMTO method for nonequilibrium electron transport in nanosystems. Phys. Rev. B
**2005**, 71, 195422. [Google Scholar] [CrossRef] - Luisier, M.; Klimeck, G. Atomistic full-band simulations of silicon nanowire transistors: Effects of electron-phonon scattering. Phys. Rev. B
**2009**, 80, 15543. [Google Scholar] [CrossRef] - Zhang, L.; Xing, Y.; Wang, J. First-principles investigation of transient dynamics of molecular devices. Phys. Rev. B
**2012**, 86, 155438. [Google Scholar] [CrossRef] - Haug, H.; Koch, S. Quantum Theory of the Optical and Electronic Properties of Semiconductors; World Scientific: Singapore, 2004. [Google Scholar]
- Rossi, F. Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies; Springer: Berlin, Germany, 2011. [Google Scholar]
- Buot, F. Nonequilibrium Quantum Transport Physics in Nanosystems: Foundation of Computational Nonequilibrium Physics in Nanoscience and Nanotechnology; World Scientific: Singapore, 2009. [Google Scholar]
- Ryzhii, M.; Ryzhii, V. Monte Carlo analysis of ultrafast electron transport in quantum well infrared photodetectors. Appl. Phys. Lett.
**1998**, 72, 842–844. [Google Scholar] [CrossRef] - Iotti, R.C.; Rossi, F. Nature of charge transport in quantum-cascade lasers. Phys. Rev. Lett.
**2001**, 87, 146603. [Google Scholar] [CrossRef] [PubMed] - Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H.E.; Linfield, E.H.; Davies, A.G.; Ritchie, D.A.; Iotti, R.C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature
**2002**, 417, 156–159. [Google Scholar] [CrossRef] [PubMed] - Callebaut, H.; Kumar, S.; Williams, B.S.; Hu, Q.; Reno, J.L. Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers. Appl. Phys. Lett.
**2004**, 84, 645–647. [Google Scholar] [CrossRef] - Lu, J.T.; Cao, J.C. Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers. Appl. Phys. Lett.
**2006**, 89, 211115. [Google Scholar] [CrossRef] - Bellotti, E.; Driscoll, K.; Moustakas, T.D.; Paiella, R. Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl. Phys. Lett.
**2008**, 92, 101112. [Google Scholar] [CrossRef] - Jirauschek, C. Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers. Appl. Phys. Lett.
**2010**, 96, 011103. [Google Scholar] [CrossRef] [Green Version] - Matyas, A.; Belkin, M.A.; Lugli, P.; Jirauschek, C. Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs. Appl. Phys. Lett.
**2010**, 96, 201110. [Google Scholar] [CrossRef] [Green Version] - Iotti, R.C.; Rossi, F.; Vitiello, M.S.; Scamarcio, G.; Mahler, L.; Tredicucci, A. Impact of nonequilibrium phonons on the electron dynamics in terahertz quantum cascade lasers. Appl. Phys. Lett.
**2010**, 97, 033110. [Google Scholar] [CrossRef] [Green Version] - Vitiello, M.S.; Iotti, R.C.; Rossi, F.; Mahler, L.; Tredicucci, A.; Beere, H.E.; Ritchie, D.A.; Hu, Q.; Scamarcio, G. Non-equilibrium longitudinal and transverse optical phonons in terahertz quantum cascade lasers. Appl. Phys. Lett.
**2012**, 100, 091101. [Google Scholar] [CrossRef] - Matyas, A.; Lugli, P.; Jirauschek, C. Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers. Appl. Phys. Lett.
**2013**, 102, 011101. [Google Scholar] [CrossRef] - Iotti, R.C.; Rossi, F. Coupled carrier–phonon nonequilibrium dynamics in terahertz quantum cascade lasers: A Monte Carlo analysis. New J. Phys.
**2013**, 15, 075027. [Google Scholar] [CrossRef] - Gmachl, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys.
**2001**, 64, 1533–1601. [Google Scholar] [CrossRef] - Brunetti, R.; Jacoboni, C.; Price, P.J. Quantum-mechanical evolution of real-space transfer. Phys. Rev. B
**1994**, 50, 11872–11878. [Google Scholar] [CrossRef] - Reiter, D.; Glanemann, M.; Axt, V.M.; Kuhn, T. Spatiotemporal dynamics in optically excited quantum wire-dot systems: Capture, escape, and wave-front dynamics. Phys. Rev. B
**2007**, 75, 205327. [Google Scholar] [CrossRef] - Rosati, R.; Iotti, R.C.; Dolcini, F.; Rossi, F. Derivation of nonlinear single-particle equations via many-body Lindblad superoperators: A density-matrix approach. Phys. Rev. B
**2014**, 90, 125140. [Google Scholar] [CrossRef] - Taj, D.; Iotti, R.C.; Rossi, F. Microscopic modeling of energy relaxation and decoherence in quantum optoelectronic devices at the nanoscale. Eur. Phys. J. B
**2009**, 72, 305–322. [Google Scholar] [CrossRef] [Green Version] - Rosati, R.; Rossi, F. Scattering nonlocality in quantum charge transport: Application to semiconductor nanostructures. Phys. Rev. B
**2014**, 89, 205415. [Google Scholar] [CrossRef] - Rosati, R.; Dolcini, F.; Rossi, F. Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation. Phys. Rev. B
**2015**, 92, 235423. [Google Scholar] [CrossRef] - Rosati, R.; Reiter, D.E.; Kuhn, T. Lindblad approach to spatiotemporal quantum dynamics of phonon-induced carrier capture processes. Phys. Rev. B
**2017**, 95, 165302. [Google Scholar] [CrossRef] - Lindblad, G. Generators of quantum dynamical semigroups. Commun. Math. Phys.
**1976**, 48, 119–130. [Google Scholar] [CrossRef] - Kiršanskas, G.; Franckié, M.; Wacker, A. Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B
**2018**, 97, 035432. [Google Scholar] [CrossRef] [Green Version] - Jacoboni, C.; Bordone, P. The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys.
**2004**, 67, 1033. [Google Scholar] [CrossRef] - Frensley, W.R. Transient Response of a Tunneling Device Obtained from the Wigner Function. Phys. Rev. Lett.
**1986**, 57, 2853–2856. [Google Scholar] [CrossRef] [PubMed] - Kluksdahl, N.C.; Kriman, A.M.; Ferry, D.K.; Ringhofer, C. Self-consistent study of the resonant-tunneling diode. Phys. Rev. B
**1989**, 39, 7720–7735. [Google Scholar] [CrossRef] - Buot, F.A.; Jensen, K.L. Lattice Weyl–Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices. Phys. Rev. B
**1990**, 42, 9429–9457. [Google Scholar] [CrossRef] - Jensen, K.; Buot, F. The effects of scattering on current-voltage characteristics, transient response, and particle trajectories in the numerical simulation of resonant tunneling diodes. J. Appl. Phys.
**1990**, 67, 7602–7607. [Google Scholar] [CrossRef] - Miller, D.R.; Neikirk, D.P. Simulation of intervalley mixing in double-barrier diodes using the lattice Wigner function. Appl. Phys. Lett.
**1991**, 58, 2803–2805. [Google Scholar] [CrossRef] - McLennan, M.J.; Lee, Y.; Datta, S. Voltage drop in mesoscopic systems: A numerical study using a quantum kinetic equation. Phys. Rev. B
**1991**, 43, 13846–13884. [Google Scholar] [CrossRef] - Tso, H.C.; Horing, N.J.M. Wigner-function formulation of nonlinear electron-hole transport in a quantum well and analysis of the linear transient and steady state. Phys. Rev. B
**1991**, 44, 11358–11380. [Google Scholar] [CrossRef] - Gullapalli, K.K.; Miller, D.R.; Neikirk, D.P. Simulation of quantum transport in memory-switching double-barrier quantum-well diodes. Phys. Rev. B
**1994**, 49, 2622–2628. [Google Scholar] [CrossRef] - Fernando, C.L.; Frensley, W.R. Intrinsic high-frequency characteristics of tunneling heterostructure devices. Phys. Rev. B
**1995**, 52, 5092–5104. [Google Scholar] [CrossRef] - El Sayed, K.; Kenrow, J.A.; Stanton, C.J. Femtosecond relaxation kinetics of highly excited electronic wave packets in semiconductors. Phys. Rev. B
**1998**, 57, 12369–12377. [Google Scholar] [CrossRef] - Pascoli, M.; Bordone, P.; Brunetti, R.; Jacoboni, C. Wigner paths for electrons interacting with phonons. Phys. Rev. B
**1998**, 58, 3503–3506. [Google Scholar] [CrossRef] - Kim, K.Y.; Lee, B. Wigner-function formulation in anisotropic semiconductor quantum wells. Phys. Rev. B
**2001**, 64, 115304. [Google Scholar] [CrossRef] - Nedjalkov, M.; Kosina, H.; Selberherr, S.; Ringhofer, C.; Ferry, D.K. Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B
**2004**, 70, 115319. [Google Scholar] [CrossRef] - Nedjalkov, M.; Vasileska, D.; Ferry, D.K.; Jacoboni, C.; Ringhofer, C.; Dimov, I.; Palankovski, V. Wigner transport models of the electron-phonon kinetics in quantum wires. Phys. Rev. B
**2006**, 74, 035311. [Google Scholar] [CrossRef] - Taj, D.; Genovese, L.; Rossi, F. Quantum-transport simulations with the Wigner-function formalism: Failure of conventional boundary-condition schemes. Europhys. Lett.
**2006**, 74, 1060–1066. [Google Scholar] [CrossRef] - Weetman, P.; Wartak, M.S. Self-consistent model of a nanoscale semiconductor laser using Green and Wigner functions in two bases. Phys. Rev. B
**2007**, 76, 035332. [Google Scholar] [CrossRef] - Querlioz, D.; Saint-Martin, J.; Bournel, A.; Dollfus, P. Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices. Phys. Rev. B
**2008**, 78, 165306. [Google Scholar] [CrossRef] - Morandi, O. Multiband Wigner-function formalism applied to the Zener band transition in a semiconductor. Phys. Rev. B
**2009**, 80, 024301. [Google Scholar] [CrossRef] - Wójcik, P.; Spisak, B.; Wołoszyn, M.; Adamowski, J. Self-consistent Wigner distribution function study of gate-voltage controlled triple-barrier resonant tunnelling diode. Semicond. Sci. Technol.
**2009**, 24, 095012. [Google Scholar] [CrossRef] [Green Version] - Barraud, S. Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism. J. Appl. Phys.
**2009**, 106, 063714. [Google Scholar] [CrossRef] - Yoder, P.D.; Grupen, M.; Smith, R. Demonstration of Intrinsic Tristability in Double-Barrier Resonant Tunneling Diodes With the Wigner Transport Equation. IEEE Trans. Electron Devices
**2010**, 57, 3265–3274. [Google Scholar] [CrossRef] - Álvaro, M.; Bonilla, L.L. Two miniband model for self-sustained oscillations of the current through resonant-tunneling semiconductor superlattices. Phys. Rev. B
**2010**, 82, 035305. [Google Scholar] [CrossRef] - Savio, A.; Poncet, A. Study of the Wigner function at the device boundaries in one-dimensional single- and double-barrier structures. J. Appl. Phys.
**2011**, 109, 033713. [Google Scholar] [CrossRef] - Trovato, M.; Reggiani, L. Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism. Phys. Rev. E
**2011**, 84, 061147. [Google Scholar] [CrossRef] [PubMed] - Rosati, R.; Dolcini, F.; Iotti, R.C.; Rossi, F. Wigner-function formalism applied to semiconductor quantum devices: Failure of the conventional boundary condition scheme. Phys. Rev. B
**2013**, 88, 035401. [Google Scholar] [CrossRef] - Sellier, J.; Amoroso, S.; Nedjalkov, M.; Selberherr, S.; Asenov, A.; Dimov, I. Electron dynamics in nanoscale transistors by means of Wigner and Boltzmann approaches. Physica A
**2014**, 398, 194–198. [Google Scholar] [CrossRef] - Sellier, J.; Dimov, I. A Wigner approach to the study of wave packets in ordered and disordered arrays of dopants. Physica A
**2014**, 406, 185–190. [Google Scholar] [CrossRef] - Jonasson, O.; Knezevic, I. Dissipative transport in superlattices within the Wigner function formalism. J. Comput. Electron.
**2015**, 14, 879–887. [Google Scholar] [CrossRef] [Green Version] - Hamerly, R.; Mabuchi, H. Quantum noise of free-carrier dispersion in semiconductor optical cavities. Phys. Rev. A
**2015**, 92, 023819. [Google Scholar] [CrossRef] - Cabrera, R.; Bondar, D.I.; Jacobs, K.; Rabitz, H.A. Efficient method to generate time evolution of the Wigner function for open quantum systems. Phys. Rev. A
**2015**, 92, 042122. [Google Scholar] [CrossRef] - Kim, K.Y.; Kim, S. Effect of uncertainty principle on the Wigner function-based simulation of quantum transport. Solid State Electron.
**2015**, 111, 22–26. [Google Scholar] [CrossRef] - Iotti, R.C.; Dolcini, F.; Rossi, F. Wigner-function formalism applied to semiconductor quantum devices: Need for nonlocal scattering models. Phys. Rev. B
**2017**, 96, 115420. [Google Scholar] [CrossRef] - Beenakker, C.W.J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B
**1991**, 44, 1646–1656. [Google Scholar] [CrossRef] [Green Version] - Schoeller, H.; Schön, G. Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction. Phys. Rev. B
**1994**, 50, 18436–18452. [Google Scholar] [CrossRef] [Green Version] - Dolcini, F.; Dell’Anna, L. Multiple Andreev reflections in a quantum dot coupled to superconducting leads: Effect of spin-orbit coupling. Phys. Rev. B
**2008**, 78, 024518. [Google Scholar] [CrossRef] - Secchi, A.; Rontani, M. Coulomb versus spin-orbit interaction in few-electron carbon-nanotube quantum dots. Phys. Rev. B
**2009**, 80, 041404. [Google Scholar] [CrossRef] - Ström, A.; Johannesson, H.; Japaridze, G.I. Edge Dynamics in a Quantum Spin Hall State: Effects from Rashba Spin-Orbit Interaction. Phys. Rev. Lett.
**2010**, 104, 256804. [Google Scholar] [CrossRef] [PubMed] - Dolcini, F. Signature of interaction in dc transport of ac-gated quantum spin Hall edge states. Phys. Rev. B
**2012**, 85, 033306. [Google Scholar] [CrossRef] - The Wigner transport equation in Equation (7) is formally reminiscent of the Boltzmann transport one for the semiclassical distribution function. Such basic link has also stimulated the development of so-called Wigner Monte Carlo schemes [58,60], namely simulation techniques based on a Monte Carlo solution of the Wigner transport equation.
- Moyal, J.E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc.
**1949**, 45, 99–124. [Google Scholar] [CrossRef] - A relevant exception is the so-called “dynamics controlled truncation” introduced by Axt and Stahl [8], based on an expansion in powers of the exciting laser field.
- Iotti, R.C.; Ciancio, E.; Rossi, F. Quantum transport theory for semiconductor nanostructures: A density-matrix formulation. Phys. Rev. B
**2005**, 72, 125347. [Google Scholar] [CrossRef] - Spohn, H. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys.
**1980**, 52, 569–615. [Google Scholar] [CrossRef] - It is worth stressing that this treatment is based on the assumption of thermal-equilibrium phonons with a uniform effective temperature. In the presence of significant hot-phonon effects [36], additional nonlocal contributions due to the spatial modulation of the phonon population may arise; however, the latter are expected to play a minor role on the nanometric scale.
- As usual, the two-body carrier–carrier coupling considered here describes the short-range Coulomb contribution only. The long-range contribution may be accounted for via coupled Wigner-Poisson schemes [7].
- The fact that Equation (23) is the inverse of the Weyl–Wigner transform in (21) can be easily checked noting that:
$${(2\pi )}^{-3}\sum _{{\alpha}_{1}{\alpha}_{2}}{W}_{{\alpha}_{1}{\alpha}_{2}}^{\ast}(\mathbf{r},\mathbf{k}){W}_{{\alpha}_{1}{\alpha}_{2}}({\mathbf{r}}^{\prime},{\mathbf{k}}^{\prime})=\delta (\mathbf{r}-{\mathbf{r}}^{\prime})\delta (\mathbf{k}-{\mathbf{k}}^{\prime}).$$
- Such a quantum-mechanical state superposition may be realized via ultrafast coherent laser excitation in the infrared spectral range [10].
- We stress that such a pure state constitutes the building block for the generation of maximally entangled electronic Bell states in semiconductors [23].

**Figure 1.**(

**a**) conduction band profile along the growth (z) direction for the prototypical GaAs/(Al,Ga)As QW nanostructure considered in our simulated experiments. Energy levels of the first two confined states (${\u03f5}_{1}$ and ${\u03f5}_{2}$) are shown, together with the corresponding wavefunctions (${\varphi}_{1}\left(z\right)$ and ${\varphi}_{2}\left(z\right)$); (

**b**) probability density ($n\left(z\right)={\left|\psi \left(z\right)\right|}^{2}$) corresponding to the coherent state in (41); (

**c**) Wigner function (see Equation (43)) of the coherent state in (41) plotted for the two relevant values ${k}_{1}$ and ${k}_{2}$ corresponding to the two QW basis states in (40) (see also panel (

**a**)).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Iotti, R.C.; Rossi, F.
Microscopic Theory of Energy Dissipation and Decoherence in Solid-State Quantum Devices: Need for Nonlocal Scattering Models. *Entropy* **2018**, *20*, 726.
https://doi.org/10.3390/e20100726

**AMA Style**

Iotti RC, Rossi F.
Microscopic Theory of Energy Dissipation and Decoherence in Solid-State Quantum Devices: Need for Nonlocal Scattering Models. *Entropy*. 2018; 20(10):726.
https://doi.org/10.3390/e20100726

**Chicago/Turabian Style**

Iotti, Rita Claudia, and Fausto Rossi.
2018. "Microscopic Theory of Energy Dissipation and Decoherence in Solid-State Quantum Devices: Need for Nonlocal Scattering Models" *Entropy* 20, no. 10: 726.
https://doi.org/10.3390/e20100726