Heisenberg and Entropic Uncertainty Measures for Large-Dimensional Harmonic Systems
Abstract
:1. Introduction
2. The D-Dimensional Harmonic Problem: Basics
3. Radial Expectation Values of Large-Dimensional Harmonic States
4. Rényi Entropies of Large-Dimensional Harmonic States
4.1. Rényi Entropy in Position Space
4.1.1. Radial Position Rényi Entropy
4.1.2. Angular Rényi Entropy
4.1.3. Total Position Rényi Entropy
4.2. Rényi Entropy in Momentum Space
4.3. Position-Momentum Entropic Uncertainty Sums
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Rényi-Like Functionals of Laguerre Polynomials with Large Parameters
Appendix B. On the Angular Functions and
References
- Benavides-Riveros, C.; Toranzo, I.V.; Dehesa, J.S. Entanglement in N-harmonium: Bosons and fermions. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 195503. [Google Scholar] [CrossRef]
- Koscik, P. Quantum Entanglement of Two Harmonically Trapped Dipolar Particles. Few-Body Syst. 2015, 56, 107–114. [Google Scholar] [CrossRef]
- Loos, P.F.; Gill, P.M.W. Two Electrons on a Hypersphere: A Quasiexactly Solvable Model. Phys. Rev. Lett. 2009, 103, 123008. [Google Scholar] [CrossRef] [PubMed]
- Loos, P.F.; Gill, P.M.W. Excited states of spherium. Mol. Phys. 2010, 108, 10. [Google Scholar] [CrossRef]
- Toranzo, I.V.; Plastino, A.R.; Sánchez-Moreno, P.; Dehesa, J.S. Quantum entanglement in (d-1)-spherium. J. Phys. A Math. Theor. 2015, 48, 475302. [Google Scholar] [CrossRef]
- Coe, J.P.; Sudbery, A.; D’Amico, I. Entanglement and density-functional theory: Testing approximations on Hooke’s atom. Phys. Rev. B 2008, 77, 205122. [Google Scholar] [CrossRef]
- Romera, E.; Dehesa, J.S. The Fisher-Shannon information plane, an electron correlation tool. J. Chem. Phys. 2004, 120, 8906. [Google Scholar] [CrossRef] [PubMed]
- Crandall, R.; Whitnell, R.; Bettega, R. Exactly soluble two-electron atomic model. Am. J. Phys. 1984, 52, 438. [Google Scholar] [CrossRef]
- Moshinsky, M.; Smirnov, Y.F. The Harmonic Oscillator: From Atoms to Quarks, 2nd ed.; Gordon and Breach: New York, NY, USA, 1996. [Google Scholar]
- Manzano, D.; Plastino, A.R.; Dehesa, J.S.; Koga, T. Quantum entanglement in two-electron atomic models. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 275301. [Google Scholar] [CrossRef]
- Yáñez, R.J.; Plastino, A.R.; Dehesa, J.S. Quantum entanglement in a soluble two-electron model atom. Eur. Phys. J. D 2010, 56, 141. [Google Scholar]
- Van Diejen, J.F.; Vinet, L. (Eds.) Calogero-Moser-Sutherland Models; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Herschbach, D.R.; Avery, J.; Goscinski, O. (Eds.) Dimensional Scaling in Chemical Physics; Kluwer Academic Publishers: London, UK, 1993. [Google Scholar]
- Tsipis, C.T.; Popov, V.S.; Herschbach, D.R.; Avery, J.S. New Methods in Quantum Theory; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Chatterjee, A. Large-N expansions in quantum mechanics, atomic physics and some O(N) invariant systems. Phys. Rep. 1990, 186, 249–372. [Google Scholar] [CrossRef]
- Herschbach, D.R. Dimensional scaling and renormalization. Int. J. Quant. Chem. 1996, 57, 295–308. [Google Scholar] [CrossRef]
- Yaffe, L.G. Large N limits as classical mechanics. Rev. Mod. Phys. 1982, 54, 407. [Google Scholar] [CrossRef]
- Yaffe, L.G. Large N quantum mechanics and classical limits. Phys. Today 1983, 36, 50. [Google Scholar] [CrossRef]
- Herschbach, D.R. Fifty Years in Physical Chemistry: Homage to Mentors, Methods, and Molecules. Annu. Rev. Phys. Chem. 2000, 51, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Gallup, G.A. Angular momentum in n-dimensional spaces. J. Mol. Spectrosc. 1959, 3, 673–682. [Google Scholar] [CrossRef]
- Chang, L.N.; Minic, D.; Okamura, N.; Takeuchi, T. Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 2002, 65, 125027. [Google Scholar] [CrossRef]
- Dong, S.-H. Factorization Method in Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Dong, S.-H. Wave Equations in Higher Dimensions; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Lanfear, N.; Lopez, R.M.; Suslov, S.K. Exact wave functions for generalized harmonic oscillators. J. Russ. Laser Res. 2011, 32, 352. [Google Scholar] [CrossRef]
- Buyukasik, S.A.; Cayik, Z.J. Exactly solvable Hermite, Laguerre, and Jacobi type quantum parametric oscillators. J. Math. Phys. 2016, 57, 122107. [Google Scholar] [CrossRef]
- Adegoke, K.; Olatinwo, A.; Otobrise, H.; Akintujoye, F.; Tiamiyu, A. Exact diagonalization of the d-dimensional confined quantum harmonic oscillator. ArXiv, 2016; arXiv:1604.01095. [Google Scholar]
- Jizba, P.; Ma, Y.; Hayes, A.; Dunningham, J.A. One-parameter class of uncertainty relations based on entropy power. Phys. Rev. E 2016, 93, 060104(R). [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S. Analytic harmonic approach to the N-body problem. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 055303. [Google Scholar] [CrossRef]
- Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S. Quantum statistics and thermodynamics in the harmonic approximation. Phys. Rev. E 2012, 85, 021117. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S. Virial expansion coefficients in the harmonic approximation. Phys. Rev. E 2012, 86, 021115. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.R.; Volosniev, A.G.; Fedorov, D.V.; Jensen, A.S.; Zinner, N.T. Analytic solutions of topologically disjoint systems. J. Phys. A Math. Theor. 2015, 48, 085301. [Google Scholar] [CrossRef]
- Dean, D.S.; Le Doussal, P.; Majumdar, S.T.; Schehr, G. Non-interacting fermions at finite temperature in a d-dimensional trap: Universal correlations. Phys. Rev. A 2016, 94, 063622. [Google Scholar] [CrossRef]
- Hooft, G. Physics on the boundary between classical and quantum mechanics. J. Phys. Conf. Ser. 2014, 504, 012003. [Google Scholar] [CrossRef]
- Witten, E. Quarks, atoms, and the 1/N expansion. Phys. Today 1980, 33, 38. [Google Scholar] [CrossRef]
- Herschbach, D.R. Dimensional interpolation for two-electron atoms. J. Chem. Phys. 1986, 84, 838. [Google Scholar] [CrossRef]
- Cioslowski, J.; Strasburger, K. Harmonium atoms at weak confinements: The formation of the Wigner molecules. J. Chem. Phys. 2017, 146, 044308. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, H. On the lattice thermal conduction. Prog. Theor. Phys. Suppl. 1970, 45, 231–262. [Google Scholar] [CrossRef]
- Asadian, A.; Manzano, D.; Tiersch, M.; Briegel, H. Heat transport through lattices of quantum harmonic oscillators in arbitrary dimensions. Phys. Rev. E 2013, 87, 012109. [Google Scholar] [CrossRef] [PubMed]
- Lepri, S.; Livi, R.; Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 2003, 377, 1–80. [Google Scholar] [CrossRef]
- Yáñez, R.J.; Van Assche, W.; Dehesa, J.S. Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 1994, 50, 3065. [Google Scholar] [CrossRef] [PubMed]
- Van Assche, W.; Yáñez, R.J.; Dehesa, J.S. Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential. J. Math. Phys. 1995, 36, 4106. [Google Scholar] [CrossRef]
- Choi, J.R.; Kim, M.S.; Kim, D.; Maamache, M.; Menouar, S.; Nahm, I.H. Information theories for time-dependent harmonic oscillator. Ann. Phys. 2011, 326, 1381–1393. [Google Scholar] [CrossRef]
- Rovenchak, A. Complex-valued fractional statistics for D-dimensional harmonic oscillators. Phys. Lett. A 2014, 378, 100–108. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Tulyakov, D.N.; Toranzo, I.V.; Dehesa, J.S. Rényi entropies of the highly-excited states of multidimensional harmonic oscillators by use of strong Laguerre asymptotics. Eur. Phys. J. B 2016, 89, 85. [Google Scholar] [CrossRef]
- Plenio, M.B.; Hartley, J.; Eisert, J. Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 2004, 6, 36. [Google Scholar] [CrossRef]
- Galve, F.; Lutz, E. Energy cost and optimal entanglement production in harmonic chains. Phys. Rev. A 2009, 79, 032327. [Google Scholar] [CrossRef]
- Gadre, S.R.; Sears, S.B.; Chakravorty, S.J.; Bendale, R.D. Some novel characteristics of atomic information entropies. Phys. Rev. A 1985, 32, 2602. [Google Scholar] [CrossRef]
- Ray, A.; Mahata, K.; Ray, P.P. Moments of probability distributions, wavefunctions, and their derivatives at the origin of N-dimensional central potentials. Am. J. Phys. 1988, 56, 462. [Google Scholar] [CrossRef]
- Majernik, V.; Opatrny, T. Entropic uncertainty relations for a quantum oscillator. J. Phys. A Math. Gen. 1996, 29, 2187. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Yáñez, R.J.; Aptekarev, A.I.; Buyarov, V. Strong asymptotics of Laguerre polynomials and information entropies of two-dimensional harmonic oscillator and one-dimensional Coulomb potentials. J. Math. Phys. 1998, 39, 3050. [Google Scholar] [CrossRef]
- Ghosh, A.; Chaudhuri, P. Generalized Position and Momentum Tsallis Entropies. Int. J. Theor. Phys. 2000, 39, 2423–2438. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Martínez-Finkelshtein, A.; Sánchez-Ruiz, J. Quantum information entropies and orthogonal polynomials. J. Comput. Appl. Math. 2001, 133, 23–46. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; González-Férez, R.; Dehesa, J.S. Improvement of the Heisenberg and Fisher-information- based uncertainty relations for D-dimensional central potentials. New J. Phys. 2006, 8, 330. [Google Scholar] [CrossRef]
- Zozor, S.; Portesi, M.; Sánchez-Moreno, P.; Dehesa, J.S. Position-momentum uncertainty relations based on moments of arbitrary order. Phys. Rev. A 2011, 83, 052107. [Google Scholar] [CrossRef]
- Dakic, B.; Bruner, C. The classical limit of a physical theory and the dimensionality of space. In Quantum Theory: Informational Foundations and Foils; Chiribella, G., Spekkens, R.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Guerrero, A.; Sánchez-Moreno, P.; Dehesa, J.S. Upper bounds on quantum uncertainty products and complexity measures. Phys. Rev. A 2011, 84, 042105. [Google Scholar] [CrossRef]
- Al-Jaber, S.M. Uncertainty Relations for Some Central Potentials in N-Dimensional Space. Appl. Math. 2016, 7, 508. [Google Scholar] [CrossRef]
- Dehesa, J.S.; López-Rosa, S.; Martínez-Finkelshtein, A.; Yáñez, R.J. Heisenberg-like uncertainty measures for D-dimensional hydrogenic systems at large, D. Int. J. Quantum Chem. 2010, 110, 1529. [Google Scholar]
- Toranzo, I.V.; Martínez-Finkelshtein, A.; Dehesa, J.S. Heisenberg-like uncertainty measures for D-dimensional hydrogenic systems at large D. J. Math. Phys. 2016, 57, 08219. [Google Scholar] [CrossRef]
- Puertas-Centeno, D.; Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic uncertainty measures for large-dimensional hydrogenic systems. 2017; in press. [Google Scholar]
- Louck, J.D.; Shaffer, W.H. Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part III. Radial integrals. J. Mol. Spectrosc. 1960, 4, 334–341. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Toranzo, I.V.; Puertas-Centeno, D. Entropic measures of Rydberg-like harmonic states. Int. J. Quantum Chem. 2017, 117, 48–56. [Google Scholar] [CrossRef]
- Buyarov, V.; Dehesa, J.S.; Martínez-Finkelshtein, A.; Sánchez-Lara, J. Computation of the Entropy of Polynomials Orthogonal on an Interval. SIAM J. Sci. Comput. 2004, 26, 488–509. [Google Scholar] [CrossRef]
- Rényi, A. On Measures of Entropy and Information. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability; Neyman, J., Ed.; University of California Press: Berkeley, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Leonenko, N.; Pronzato, L.; Savani, V. A class of Rényi information estimators for multidimensional densities. Ann. Stat. 2008, 40, 2153. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379. [Google Scholar] [CrossRef]
- Aczel, J.; Daroczy, Z. On Measures of Information and Their Characterizations; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Romera, E.; Angulo, J.C.; Dehesa, J.S. The Haussdorf entropic moment problem. J. Math. Phys. 2001, 2, 2309. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Jizba, P.; Arimitsu, T. The world according to Rényi: thermodynamics of multifractal systems. Ann. Phys. 2004, 312, 17–57. [Google Scholar] [CrossRef]
- Jizba, P.; Dunningham, J.A.; Joo, J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. 2015, 355, 87–115. [Google Scholar] [CrossRef]
- Dehesa, J.S.; López-Rosa, S.; Manzano, D. Entropy and Complexity Analysis of D-Dimension at Quantum Systems. In Statistical Complexities: Application to Electronic Structure; Sen, K.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bialynicki-Birula, I.; Rudnicki, L. Entropic uncertainty relations in quantum physics. In Statistical Complexities: Application to Electronic Structure; Sen, K.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hall, M.J.W. Universal geometric approach to uncertainty, entropy, and information. Phys. Rev. A 1999, 59, 2602. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 2006, 74, 052101. [Google Scholar] [CrossRef]
- Zozor, S.; Vignat, C. On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles. Physica A 2007, 375, 499–517. [Google Scholar] [CrossRef]
- Zozor, S.; Portesi, M.; Vignat, C. Some extensions of the uncertainty principle. J. Phys. A 2008, 387, 4800. [Google Scholar] [CrossRef]
- Louck, J.D.; Shaffer, W.H. Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part I. The twofold degenerate oscillator. J. Mol. Spectrosc. 1960, 4, 285–297. [Google Scholar] [CrossRef]
- Koornwinder, T.H.; Wong, R.; Koekoek, R.; Swarttouw, R.F. Orthogonal Polynomials. In NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010; Chapter 18. [Google Scholar]
- Avery, J. Hyperspherical Harmonics and Generalized Sturmmians; Kluwer Academic Publishers: New York, NY, USA, 2002. [Google Scholar]
- Sen, K.D.; Katriel, J. Information entropies for eigendensities of homogeneous potentials. J. Chem. Phys. 2006, 125, 07411. [Google Scholar] [CrossRef] [PubMed]
- Cafaro, C.; Giffin, A.; Lupo, C.; Mancini, S. Softening the complexity of entropic motion on curved statistical manifolds. Open Syst. Inf. Dyn. 2012, 19, 1250001. [Google Scholar] [CrossRef]
- Giffin, A.; Ali, S.A.; Cafaro, C. Local softening of information geometric indicators of chaos in statistical modeling in the presence of quantum-like considerations. Entropy 2013, 15, 4622. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier Analysis. Ann. Math. 1975, 102, 159–182. [Google Scholar] [CrossRef]
- Angulo, J.C. Uncertainty relationships in many-body systems. J. Phys. A 1993, 26, 6493. [Google Scholar] [CrossRef]
- Angulo, J.C. Information entropy and uncertainty in D-dimensional many-body systems. Phys. Rev. A 1994, 50, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic functionals of Laguerre and Gegenbauer polynomials with large parameters. J. Phys. A 2017, in press. [Google Scholar]
- Temme, N.M. Uniform asymptotic methods for integrals. Indag. Math. 2013, 24, 739–765. [Google Scholar] [CrossRef]
- Temme, N.M. Asymptotic Methods for Integrals; Series in Analysis; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2015. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Heisenberg and Entropic Uncertainty Measures for Large-Dimensional Harmonic Systems. Entropy 2017, 19, 164. https://doi.org/10.3390/e19040164
Puertas-Centeno D, Toranzo IV, Dehesa JS. Heisenberg and Entropic Uncertainty Measures for Large-Dimensional Harmonic Systems. Entropy. 2017; 19(4):164. https://doi.org/10.3390/e19040164
Chicago/Turabian StylePuertas-Centeno, David, Irene V. Toranzo, and Jesús S. Dehesa. 2017. "Heisenberg and Entropic Uncertainty Measures for Large-Dimensional Harmonic Systems" Entropy 19, no. 4: 164. https://doi.org/10.3390/e19040164
APA StylePuertas-Centeno, D., Toranzo, I. V., & Dehesa, J. S. (2017). Heisenberg and Entropic Uncertainty Measures for Large-Dimensional Harmonic Systems. Entropy, 19(4), 164. https://doi.org/10.3390/e19040164