# Negentropy in Many-Body Quantum Systems

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Negative Entropy

## 3. Experiments

## 4. Validity of the Ideal Plasma Model: Comments and Requirements

## 5. Nuclear Fusions in Solid Metals

## 6. Fusions in Liquid Metals

## 7. Fusion in Plasmas

## 8. Conclusions

## Author Contributions

## Conflicts of Interest

## References

- Szilard, L. Über die Entropieverminderung in einem Thermodynamischen System bei Eingriffen Intelligenter Wesen. Z. Phys.
**1929**, 53, 840–856. (In German) [Google Scholar] [CrossRef] - Schrödinger, E. What is Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1945. [Google Scholar]
- Brillouin, L. Science and Information Theory; Academic Press: New York, NY, USA, 1962. [Google Scholar]
- Ho, M.-W. What is (Schroedinger’s) Negentropy? Mod. Trends Biothermokin.
**1994**, 3, 50–61. [Google Scholar] - Mahulikar, S.P.; Herwig, H. Exact thermodynamic principles for dynamic order existence and evolution in chaos. Chaos Sol. Fract.
**2009**, 41, 1939–1948. [Google Scholar] [CrossRef] - Szent-Gyorgi, A. An Introduction to Submolecular Biology; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe; Alfred A. Knopf: New York, NY, USA, 2004. [Google Scholar]
- Coraddu, M.; Lissia, M.; Quarati, P.; Scarfone, A.M. The role of correlation entropy in nuclear fusion in liquid lithium, indium and mercury. J. Phys. G Nucl. Part. Phys.
**2014**, 41, 125105–125112. [Google Scholar] [CrossRef] - Coraddu, M.; Lissia, M.; Quarati, P. Anomalous enhancements of low-energy fusion rates in plasmas: The role of ion momentum distributions and inhomogeneous screening. Centr. Europ. J. Phys.
**2009**, 7, 527–533. [Google Scholar] [CrossRef] - Fisch, N.J.; Gladush, M.G.; Petrushevich, Y.V.; Quarati, P.; Starostin, A.N. Enhancement of fusion rates due to quantum effects in the momentum distribution in astrophysical and laboratory non-ideal plasmas. Eur. Phys. J. D
**2012**, 66, 154. [Google Scholar] [CrossRef] - Quarati, P.; Scarfone, A.M. Non-extensive thermostatistics approach to metal melting entropy. Physica A
**2013**, 392, 6512–6522. [Google Scholar] [CrossRef] - Cvetic, M.; Nojiri, S.; Odintsov, S. Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity. Nucl. Phys. B
**2002**, 628, 295–330. [Google Scholar] [CrossRef] - Von Stockar, U.; Liu, J.-S. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta
**1999**, 1412, 191–211. [Google Scholar] [CrossRef] - Cerf, N.J.; Adami, C.D. Negative entropy and information quantum mechanics. Phys. Rev. Lett.
**1997**, 79, 5194–5196. [Google Scholar] [CrossRef] - Milton, K.A.; Guerout, R.; Ingold, G.-L.; Lambrecht, A.; Reynaud, S. Negative Casimir entropies in nanoparticle interactions. J. Phys. Condens. Matter
**2015**, 27, 214003–214011. [Google Scholar] [CrossRef] [PubMed] - Chang, Y.-F. Entropy decrease in isolated system and its quantitative calculations in thermodynamics of microstructure. Int. J. Mod. Theor. Phys.
**2015**, 4, 1–5. [Google Scholar] - Chang, Y.-F. Entropy, Fluctuation Magnified and Internal Interactions. Entropy
**2005**, 7, 190–198. [Google Scholar] [CrossRef] - Tsallis, C. Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Jones, M.C.; Sibson, R. What is projection pursuit? J. Royal Stat. Soc. Ser. A
**1987**, 150, 1–36. [Google Scholar] [CrossRef] - Hyvarinen, A. New approach of differential entropy for independent component analysis. Adv. Neural Inf. Proc. Syst.
**1998**, 10, 273–279. [Google Scholar] - Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E
**2002**, 66, 056125. [Google Scholar] [CrossRef] [PubMed] - Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E
**2005**, 72, 036108. [Google Scholar] [CrossRef] [PubMed] - Kaniadakis, G.; Quarati, P. Polynomial expansion of diffusion and drift coefficients for classical and quantum statistics. Physica A
**1997**, 237, 229–239. [Google Scholar] [CrossRef] - Coraddu, M.; Kaniadakis, G.; Lavagno, A.; Lissia, M.; Mezzorani, G.; Quarati, P. Thermal distribution in thermal plasmas, nuclear reactions and solar neutrinos. Braz. J. Phys.
**1999**, 29, 153–168. [Google Scholar] [CrossRef] - Kaniadakis, G.; Lavagno, A.; Quarati, P. Generalized fractional statistics. Mod. Phys. Lett. B
**1996**, 10, 497–563. [Google Scholar] [CrossRef] - Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E
**2005**, 71, 046128. [Google Scholar] [CrossRef] [PubMed] - Aliano, A.; Kaniadakis, G.; Miraldi, E. Bose-Einstein condensation in the framework of kappa-statistics. Physica B
**2003**, 325, 35–40. [Google Scholar] [CrossRef] - Scarfone, A.M.; Swamy, P.N. An interacting ensemble of particles in the context of quantum algebra. J. Stat. Mech. Theory Exp.
**2009**, 2009. [Google Scholar] [CrossRef] - Shiner, J.S.; Davison, M.; Landsberg, P.T. Simple measure of complexity. Phys. Rev. E
**1999**, 59. [Google Scholar] [CrossRef] - Guglielminetti, A. LUNA: Nuclear astrophysics and the underground accelerators. Phys. Dark Univ.
**2014**, 4, 10–13. [Google Scholar] [CrossRef] - Bonomo, C.; Fiorentini, G.; Fülöp, Z.; Gang, L.; Gyürky, G.; Langanke, K.; Raiola, F.; Rolfs, C.; Somorjai, E.; Strieder, F. Enhanced electron screening in d(d, p)t for deuterated metals: A possible classical explanation. Nucl. Phys. A
**2003**, 719, C37–C42. [Google Scholar] [CrossRef] - Haubold, H.J.; Mathai, A.M. On nuclear reaction rate theory. Ann. Phys.
**1984**, 7, 380–396. [Google Scholar] [CrossRef] - d’Escourt Atkinson, R.; Houtermans, F.G. Zür frage der aufbaumöglichkeit der elementen in sterner. Z. Phys.
**1929**, 54, 656–665. [Google Scholar] [CrossRef] - Kocharov, G.E. Report of A.F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad. Unpublished work. 1972. [Google Scholar]
- Vasiliev, S.S.; Kocharov, G.E.; Levkovskii, A.A. Plasma-ion distribution and solar neutrinos. Izv. AN SSSR Ser. Fiz.
**1975**, 39, 310–315. [Google Scholar] - Dappen, W. An Analytical version of the free-energy-minimization method for the equation of state of stellar plasmas. Astron. Astrophys.
**1980**, 91, 212–220. [Google Scholar] - Mussak, M.; Dappen, W. Dynamic screening correction for solar p - p reaction rates. Astrophys. J.
**2011**, 729, 96–102. [Google Scholar] [CrossRef] - Toriyabe, Y.; Yoshida, E.; Kasagi, J.; Fukuhara, M. Acceleration of the d + d reaction in metal lithium acoustic cavitation with deuteron bombardment from 30 to 70 keV. Phys. Rev. C
**2012**, 85, 054620. [Google Scholar] [CrossRef] - Yuki, H.; Satoh, T.; Ohtsuki, T.; Yorita, T.; Aoki, Y.; Yamazaki, H.; Kasagi, J. D + D reaction in metal at bombarding energies below 5 keV. J. Phys. G Nucl. Part. Phys.
**1997**, 23, 1459–1464. [Google Scholar] [CrossRef] - Prati, P.; Bemmerer, D.; Bonetti, R.; Broggini, C.; Confortola, F.; Corvisiero, P.; Costantini, H.; Cruz, J.; Formicola, A.; Fulop, Z.; et al. Recent results from the LUNA facility at Gran Sasso. J. Phys. G
**2005**, 31, S1537. [Google Scholar] [CrossRef] - Czerski, K.; Huke, A.; Martin, L.; Targosz, N.; Blauth, D.; Górska, A.; Heide, P.; Winter, H. Measurements of enhanced electron screening in d+d reactions under UHV conditions. J. Phys. G
**2008**, 35, 014012. [Google Scholar] [CrossRef] - Fang, K.; Wang, T.; Yonemura, H.; Nakagawa, A.; Sugawara, T.; Kasagi, J. Screening potential of 6Li(d,alpha)4He and 7Li(p,alpha)4He reactions in liquid lithium. J. Phys. Soc. Jpn.
**2011**, 80, 084201. [Google Scholar] [CrossRef] - Zhao, J.T.; Wang, Q.; Wang, T.S.; Xu, X.X.; Zhang, S.; Zhou, Y.S.; Guan, X.C.; Fang, K.H.; Kasagi, J. Dynamical saturated concentration of deuterium in a beryllium foil studied by low energy D(d, p)t reaction. Nucl. Instr. Meth. Phys. Res. B
**2013**, 316, 13–16. [Google Scholar] [CrossRef] - Rolfs, C. Enhanced electron screening in metals: A plasma of the poor man. Nucl. Phys. News
**2006**, 16, 9–11. [Google Scholar] [CrossRef] - Clayton, D.D. Maxwellian relative energies and star neutrinos. Nature
**1974**, 249. [Google Scholar] [CrossRef] - Cox, A.M.; Guzik, J.; Kidman, J. Oscillations of solar models with internal element diffusion. Astrophys. J.
**1999**, 342, 1187–1206. [Google Scholar] [CrossRef] - Quarati, P.; Scarfone, A.M. Modified Debye-Hückel electron shielding and penetration factor. Astrophys. J.
**2007**, 666, 1303–1310. [Google Scholar] [CrossRef] - Potekhin, A.Y.; Chabrier, G. Equation of state for magnetized Coulomb plasmas. Astron. Astrophys.
**2014**, 550, A43. [Google Scholar] [CrossRef] - Potekhin, A.Y.; Chabrier, G. Electron screening effect on stellar thermonuclear fusion. Contrib. Plasma Phys.
**2013**, 397–405. [Google Scholar] [CrossRef] - Shaviv, N.; Shaviv, G. The electrostatic screening of nuclear reactions in the sun. Astrophys. J.
**2001**, 558, 925–942. [Google Scholar] - Bahacall, J.N.; Brown, L.S.; Gruzinov, A.; Sawyer, R.F. The Salpeter plasma correction for solar fusion reactions. Astron. Astrophys.
**2002**, 383, 291–295. [Google Scholar] - Weiss, A.; Flaskamp, M.; Tsytovich, V.N. Solar models and electron screening. Astron. Astrophys.
**2001**, 371, 1123–1127. [Google Scholar] - Ferro, F.; Lavagno, A.; Quarati, P. Metastable and stable equilibrium state of stellar electron-nuclear plasmas. Phys. Lett. A
**2005**, 336, 370–377. [Google Scholar] [CrossRef] - Wallace, D.C.; Holian, B.; Johnson, J.; Straub, G. High-temperature free energy expansion for metal fluids. Phys. Rev. A
**1982**, 26, 2882–2885. [Google Scholar] - Wallace, D.C. Evaluation of thermodynamic functions of elemental crystals and liquids. Phys. Rev. E
**1997**, 56, 1981–1986. [Google Scholar] - Wallace, D.C. Statistical Physics of Crystals and Liquids; World Scientific: Singapore, Singapore, 2002. [Google Scholar]
- Wallace, D.C. Melting of elements. Proc. Roy. Soc. London A
**1991**, 433, 631–661. [Google Scholar] [CrossRef] - Ichimaru, S. Statistical Plasma Physics, Volume II: Condensed Plasmas. Frontiers in Physics; Addison-Wesley: Reading, MA, USA, 1994. [Google Scholar]
- Ichimaru, S.; Kitamura, H. Thermodynamic enhancement of nuclear reactions in dense stellar plasmas. Publ. Astron. Soc. Jpn.
**1996**, 48, 613–618. [Google Scholar] - Rogers, F.J.; Swanson, F.J.; Iglesias, C.A. Opal equation of state tables for astrophysical applications. Astrophys. J.
**1996**, 456, 902–908. [Google Scholar] [CrossRef] - Bi, L.S.; Di Mauro, M.P.; Christensen-Dalsgaard, J. An improved equation of state under solar interior conditions. Astron. Astrophys.
**2000**, 364, 879–886. [Google Scholar]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Quarati, P.; Lissia, M.; Scarfone, A.M.
Negentropy in Many-Body Quantum Systems. *Entropy* **2016**, *18*, 63.
https://doi.org/10.3390/e18020063

**AMA Style**

Quarati P, Lissia M, Scarfone AM.
Negentropy in Many-Body Quantum Systems. *Entropy*. 2016; 18(2):63.
https://doi.org/10.3390/e18020063

**Chicago/Turabian Style**

Quarati, Piero, Marcello Lissia, and Antonio M. Scarfone.
2016. "Negentropy in Many-Body Quantum Systems" *Entropy* 18, no. 2: 63.
https://doi.org/10.3390/e18020063