# Prediction of Bearing Fault Using Fractional Brownian Motion and Minimum Entropy Deconvolution

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Incipient Fault Prediction for Bearings

#### 2.1. Minimum Entropy Deconvolution

#### 2.2. Extracting Fault Feature in Frequency Domain

_{r}= 29.95 Hz, the inner ring fault’s characteristic frequency f

_{i}= 162 Hz, the outer race’s characteristic frequency f

_{o}= 107 Hz, the rolling element’s characteristic frequency f

_{rs}= 141 Hz. Then, the MED maximum cycle number is set to 30, the error is 0.01, FIR filter points is 40, so that we can verify the weak fault diagnostic effect by the MED method. Figure 2 shows the time-domain vibration signal and filtered signal with MED. Combined with the envelope spectrum, the filtered vibration signal envelope spectrum is shown in Figure 3, from which it can be seen that the envelope spectrum exists at the rotation frequency f

_{r}= 29.95 Hz, outer race fault’s characteristic frequency f

_{o}= 107 Hz, and its twice frequency, triple frequency, four times frequency components. After filtering, the fault characteristic frequency of the signal is more obvious, the rest of the frequency components are almost entirely eliminated, which can accurately realize the fault feature extraction of the outer race.

#### 2.3. Experimental Confirmation

#### 2.4. Distinguishing Equipment Weak Faults

## 3. The Fault Trend Prediction of Mechanical Equipment by FBM

#### 3.1. Calculate the Hurst Index of Vibration Intensity by R/S Method

#### 3.2. FBM Model

#### 3.2.1. Characteristic Analysis of FBM

_{0}be an arbitrary real number, Let B

_{H}(t) be fractional Brownian motion (FBM), so B

_{H}(t) is defined by [29]:

_{H}(t) is a filtered B(t) under the operation of Equation (6) and Brownian motion can be regarded as a special case of FBM.

#### 3.2.2. Stochastic Differential Equations (SDE) Based on FBM

_{H}(t) is FBM. Therefore, the methods and ideas based on FBM in the financial field with the long memory are applied to the time series with LRD characteristics and can predict the time series changes in future time.

#### 3.3. Generating FBM Series

^{H}is used to simulate the increment of FBM.

_{j}(j = 0, 1, 2, …, N), the increment of the FBM is discretized:

_{1}(t), w

_{2}(t) are independent and are standard normal distributions.

#### 3.4. Parameters Estimation of FBM

_{0}, y

_{Δt}, …, y

_{N}

_{Δt}), time vector is t = (0, Δt, …, NΔt), fractional Brown motion vector is B

_{H}(t) = [B

_{H}(0), B

_{H}(Δt), …, B

_{H}(NΔt)], so the parameters μ and σ by the maximum likelihood estimation are determined as follows [37,38]:

## 4. Predicting Fault Trends

#### 4.1. Property of Vibration Intensity

#### 4.2. Experiment Result Validation

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Jin, X.; Sun, Y.; Que, Z.; Yu, W.; Chow, T.W.S. Anomaly Detection and Fault Prognosis for Bearings. IEEE Trans. Instrum. Meas.
**2016**, 65, 2046–2054. [Google Scholar] [CrossRef] - Shekhar, J.M.; Dauphin-Tanguy, G.; Ould-Bouamama, B. Particle filter based hybrid prognostics for health monitoring of uncertain systems in bond graph framework. Mech. Syst. Signal Process.
**2016**, 75, 301–329. [Google Scholar] - Chen, C.; Zhang, B.; Vachtsevanos, G. Prediction of Machine Health Condition Using Neuro-Fuzzy and Bayesian Algorithms. IEEE Trans. Instrum. Meas.
**2012**, 61, 297–306. [Google Scholar] [CrossRef] - Kim, H.-E.; Tan Andy, C.C.; Mathew, J. Bearing fault prognosis based on health state probability estimation, expert systems with applications. Expert Syst. Appl.
**2012**, 39, 5200–5213. [Google Scholar] [CrossRef] - Li, C.; Wang, Z.; Bu, S. A novel method based on least squares support vector regression combing with strong tracking particle filter for machinery condition prognosis. J. Mech. Eng. Sci.
**2014**, 228, 1048–1062. [Google Scholar] [CrossRef] - Song, C.; Havlin, S.; Makse, H.A. Self-similarity of complex networks. Nature
**2005**, 433, 392–395. [Google Scholar] [CrossRef] [PubMed] - Tsybakov, B.; Georganas, N.D. Self-similar processes in communications networks. IEEE Trans. Inf. Theory
**1998**, 44, 1713–1725. [Google Scholar] [CrossRef] - Harmantzis, F.; Hatzinakos, D. Heavy Network Traffic Modeling and Simulation Using Stable FARIMA Processes; Stevens Institute of Technology, Castle Point on the Hudson: Hoboken, NJ, USA, 2005; Volume 45, pp. 124–141. [Google Scholar]
- Li, Y.; Xu, M.; Zhao, H.; Wei, Y.; Huang, W. A new rotating machinery fault diagnosis method based on improved local mean decomposition. Digit. Signal Process.
**2015**, 46, 201–214. [Google Scholar] [CrossRef] - Feng, Z.; Ma, H.; Zuo, M.J. Vibration signal models for fault diagnosis of planet bearings. J. Sound Vib.
**2016**, 370, 372–393. [Google Scholar] [CrossRef] - Wang, D.; Tsui, K.L.; Zhou, Q. Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis. Mech. Syst. Signal Process.
**2016**, 72, 80–91. [Google Scholar] [CrossRef] - Antoni, J.; Randall, R.B. A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. J. Vib. Acoust.
**2003**, 125, 282–289. [Google Scholar] [CrossRef] - Li, M.; Li, J.Y. On the predictability of long-range dependent series. Math. Probl. Eng.
**2010**, 2010, 1–9. [Google Scholar] [CrossRef] - Li, Q.; Liang, S.Y.; Yang, J.; Li, B. Long Range Dependence Prognostics for Bearing Vibration Intensity Chaotic Time Series. Entropy
**2016**, 18, 23. [Google Scholar] [CrossRef] - Necula, C. Option Pricing in a Fractional Brownian Motion Environment. Acad. Econ. Stud. Buchar. Roman.
**2002**, 76, 163–201. [Google Scholar] [CrossRef] - Tudor, C. Some properties of the sub-fractional Brownian motion. Stochastics
**2007**, 79, 431–448. [Google Scholar] [CrossRef] - Lei, Y.; Li, N.; Gontarz, S.; Lin, J. A Model-Based method for remaining useful life prediction of machinery. IEEE Trans. Reliab.
**2016**, 65, 1314–1326. [Google Scholar] [CrossRef] - Jiang, R.; Chen, J.; Dong, G.; Liu, T.; Xiao, W. The weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelop spectrum. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2013**, 227, 1116–1129. [Google Scholar] [CrossRef] - Endo, H.; Randall, R.B. Application of a minimum entropy deconvolution filter to enhance Autoregressive model based gear tooth fault detection technique. Mech. Syst. Signal Process.
**2007**, 21, 906–919. [Google Scholar] [CrossRef] - Al-Angari, H.M.; Sahakian, A.V. Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng.
**2007**, 54, 1900–1904. [Google Scholar] [CrossRef] [PubMed] - Hu, X.; Li, S.E.; Jia, Z.; Egardt, B. Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles. Energy
**2014**, 64, 953–960. [Google Scholar] [CrossRef] - Liu, H.Y.; Liu, G.; Yang, J.; Chen, P.-W. Analysis of blasting vibration intensity based on finite element numerical calculation. Rock Soil Mech.
**2006**, 27, 977–980. [Google Scholar] - Gnanasekaran, S.; Ajovalasit, M.; Giacomin, J. Driver estimation of steering wheel vibration intensity: Laboratory-based tests. J. Eng. Integr. Soc.
**2006**, 20, 25–31. [Google Scholar] - Levy, C.; Boistard, H.; Moulines, E.; Taqqu, M.S.; Reisen, V.A. Robust estimation of the scale and of the autocovariance function of Gaussian short and long range dependent processes. J. Time Ser. Anal.
**2011**, 32, 135–156. [Google Scholar] [CrossRef] - Li, M.; Zhang, P.; Leng, J. Improving autocorrelation regression for the Hurst parameter estimation of long-range dependent time series based on golden section search. Physica A
**2016**, 44, 189–199. [Google Scholar] [CrossRef] - Paxson, V.; Floyd, S. Wide area traffic: The failure of Poisson modeling. IEEE/ACM Trans. Netw.
**1995**, 3, 226–244. [Google Scholar] [CrossRef] - Yazici, B.; Kashyap, R.L. A class of second-order stationary self-similar processes for 1/f phenomena. IEEE Trans. Signal Process.
**1997**, 45, 396–410. [Google Scholar] [CrossRef] - Li, M. Fractal time series—A tutorial review. Math. Probl. Eng.
**2010**, 2010, 157264. [Google Scholar] [CrossRef] - Mandelbrot, B.; van Ness, J. Fractional Brownian motions, fractional noises and application. SIAM Rev.
**1968**, 10, 422–437. [Google Scholar] [CrossRef] - Biagini, F.; Hu, Y.; Øksendal, B.; Zhang, T. Stochastic Calculus for Fractional Brownian Motion and Applications; Springer: London, UK, 2008. [Google Scholar]
- Jumarie, G. Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Comput. Math. Appl.
**2010**, 59, 1142–1164. [Google Scholar] [CrossRef] - Nualart, D.; Saussereau, B. Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stoch. Process. Appl.
**2009**, 119, 391–409. [Google Scholar] [CrossRef] [Green Version] - Boufoussi, B.; Hajji, S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Stat. Probab. Lett.
**2012**, 82, 1549–1558. [Google Scholar] [CrossRef] - Li, M. Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space—A further study. Appl. Math. Model.
**2007**, 31, 625–631. [Google Scholar] [CrossRef] - Li, M.; Chi, C.-H. A correlation-based computational method for simulating long-range dependent data. Frankl. Inst. B
**2003**, 340, 503–514. [Google Scholar] [CrossRef] - Li, M. Generation of teletraffic of generalized Cauchy type. Phys. Scr.
**2010**, 81, 10. [Google Scholar] [CrossRef] - Lv, L.; Ren, F.-Y.; Qiu, W.-Y. The application of fractional derivatives in stochastic models driven by fractional Brownian motion. Physica A
**2010**, 21, 4809–4818. [Google Scholar] - Jeon, J.H.; Metzler, R. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E
**2010**, 81, 21–33. [Google Scholar] [CrossRef] [PubMed]

**Figure 5.**Envelope spectrum by MED on different days. (

**a**) Envelope spectrum by MED on first day; (

**b**) Envelope spectrum by MED on second day; (

**c**) Envelope spectrum by MED on third day; (

**d**) Envelope spectrum by MED on fourth day; (

**e**) Envelope spectrum by MED on fifth day; (

**f**) Envelope spectrum by MED on sixth day; (

**g**) Envelope spectrum by MED on seventh day; (

**h**) Envelope spectrum by MED on eighth day.

**Figure 13.**The intensity prediction by FBM model in different time periods. (

**a**) The prediction results by FBM in level A; (

**b**) The prediction results by FBM in level B; (

**c**) The prediction results by FBM in level C; (

**d**) The prediction results by FBM in level D; (

**e**) The prediction results by FBM in level E.

Method | Aggregate Variance Estimation | Absolute Value Estimation | Curve Fitting Estimation | R/S Estimation | Periodogram Estimation | Wavelet Estimation |
---|---|---|---|---|---|---|

Hurst index | 0.672 | 0.9578 | 0.914 | 0.7967 | 0.8009 | 0.8652 |

**Table 2.**The Hurst value corresponding to different sections of the vibration intensity sequence V1.

V1 | (1:640) | (10:20) | (10:30) | (10:40) | (10:70) | (20:240) | (20:50) |

H | 0.6393 | 0.4725 | 0.4773 | 0.5275 | 0.60 | 0.4495 | 0.5456 |

V1 | (50:100) | (100:140) | (120:140) | (120:180) | (150:200) | (240:300) | (300:350) |

H | 0.5543 | 0.5509 | 0.4621 | 0.64 | 0.54 | 0.5336 | 0.5198 |

V1 | (380:420) | (400:450) | (420:450) | (450:550) | (480:580) | (500:600) | (550:640) |

H | 0.5988 | 0.563 | 0.6139 | 0.727 | 0.638 | 0.621 | 0.779 |

V1 | (1:640) | (10:20) | (10:30) | (10:40) | (10:70) | (20:240) | (20:50) |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Song, W.; Li, M.; Liang, J.-K.
Prediction of Bearing Fault Using Fractional Brownian Motion and Minimum Entropy Deconvolution. *Entropy* **2016**, *18*, 418.
https://doi.org/10.3390/e18110418

**AMA Style**

Song W, Li M, Liang J-K.
Prediction of Bearing Fault Using Fractional Brownian Motion and Minimum Entropy Deconvolution. *Entropy*. 2016; 18(11):418.
https://doi.org/10.3390/e18110418

**Chicago/Turabian Style**

Song, Wanqing, Ming Li, and Jian-Kai Liang.
2016. "Prediction of Bearing Fault Using Fractional Brownian Motion and Minimum Entropy Deconvolution" *Entropy* 18, no. 11: 418.
https://doi.org/10.3390/e18110418