# Application of Sample Entropy Based LMD-TFPF De-Noising Algorithm for the Gear Transmission System

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of SE-LMD-TFPF

#### 2.1. Local Mean Decomposition

#### 2.2. Sample Entropy

#### 2.3. Basic Principle of TFPF

#### 2.4. Steps of SE-LMD-TFPF

## 3. Experiments and Results

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Robert, B.R. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wu, S.D.; Wu, C.W.; Wu, T.Y.; Wang, C.C. Multi-scale analysis based ball bearing defect diagnostics using mahalanobis distance and support vector machine. Entropy
**2013**, 15, 416–433. [Google Scholar] [CrossRef] - Li, G.Y.; Li, F.Y.; Wang, Y.F.; Dong, D.H. Fault diagnosis for a multistage planetary gear set using model-based simulation and experimental investigation. Shock Vib.
**2016**, 2016, 1–19. [Google Scholar] [CrossRef] - Guo, Y.; Wu, X.; Nan, J.; Fung, R.F. Envelop synchronous average scheme for multi-axis gear faults detection. J. Sound Vib.
**2016**, 365, 276–286. [Google Scholar] [CrossRef] - Shi, Z.L.; Song, W.Q.; Taheri, S. Improved LMD, permutation entropy and optimized K-means to fault diagnosis for roller bearings. Entropy
**2016**, 18, 1–11. [Google Scholar] [CrossRef] - Ma, J.; Wu, J.D.; Fan, Y.G.; Wang, X.D. The rolling bearing fault feature extraction based on the LMD and envelop demodulation. Math. Probl. Eng.
**2015**, 2015, 1–13. [Google Scholar] - Jiang, B.Z.; Xiang, J.W.; Wang, Y.X. Rolling bearing fault diagnosis approach using probabilistic principal component analysis denoising and cyclic bispectrum. J. Vib. Control
**2016**, 22, 2420–2433. [Google Scholar] [CrossRef] - Meng, L.J.; Xiang, J.W.; Wang, Y.X.; Jiang, Y.Y.; Gao, H.F. A hybrid fault diagnosis method using morphological filter-translation invariant wavelet and improved ensemble empirical mode decomposition. Mech. Syst. Signal Process.
**2015**, 50–51, 101–115. [Google Scholar] [CrossRef] - Chen, X.Y.; Shen, C. Study on temperature error processing technique for fiber optic gyroscope. Optik
**2013**, 124, 784–792. [Google Scholar] [CrossRef] - Han, J.J.; Mirko, V.D.B. Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding. Geophysics
**2015**, 80, KS68–KS80. [Google Scholar] [CrossRef] - Sun, J.D.; Xiao, Q.Y.; Wen, J.T.; Zhang, Y. Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis. Measurement
**2016**, 79, 147–157. [Google Scholar] [CrossRef] - Xu, S.L.; Jiang, X.M.; Huang, J.Z.; Yang, S.H.; Wang, X.F. Bayesian wavelet PCA methodology for turbo machinery damage diagnosis under uncertainty. Mech. Syst. Signal Process.
**2016**, 80, 1–18. [Google Scholar] [CrossRef] - Koley, E.; Kumar, R.; Ghosh, S. Low cost microcontroller based fault detector, classifier, zone identifier and locator for transmission lines using wavelet transform and artificial neural network: A hardware co-simulation approach. Int. J. Electr. Power Energy Syst.
**2016**, 81, 346–360. [Google Scholar] [CrossRef] - Peng, Y.F.; Cheng, J.S.; Yang, Y.; Li, B.Q. Adaptive sparsest narrow-band decomposition method and its application to rotor fault diagnosis. Measurement
**2016**, 91, 451–459. [Google Scholar] [CrossRef] - Zhang, X.Y.; Fang, Y.M.; Wang, Z.G.; Zhai, Z. EEMD de-noising adaptively in Raman spectroscopy. Spectrosc. Spectr. Anal.
**2013**, 33, 3255–3258. [Google Scholar] - Singh, D.S.; Zhao, Q. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines. Mech. Syst. Signal Process.
**2016**, 81, 202–218. [Google Scholar] [CrossRef] - Liu, Z.W.; Chen, X.F.; He, Z.J.; Shen, Z.J. LMD method and multi-class RWSVM of fault diagnosis for rotating machinery using condition monitoring information. Sensors
**2013**, 13, 8679–8694. [Google Scholar] [CrossRef] [PubMed] - Wang, Y.X.; He, Z.J.; Zi, Y.Y. A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis. J. Vib. Acoust.
**2010**, 132, 1–10. [Google Scholar] [CrossRef] - Shen, C.; Li, J.; Zhang, X.M.; Tang, J.; Cao, H.L.; Liu, J. Multi-scale parallel temperature error processing for dual-mass MEMS gyroscope. Sens. Actuators A Phys.
**2016**, 245, 160–168. [Google Scholar] [CrossRef] - Shen, C.; Cao, H.L.; Li, J.; Tang, J.; Zhang, X.M.; Shi, Y.B.; Yang, W.; Liu, J. Hybrid de-noising approach for fiber optic gyroscopes combining improved empirical mode decomposition and forward linear prediction algorithm. Rev. Sci. Instrum.
**2016**, 87, 1–8. [Google Scholar] [CrossRef] [PubMed] - Zhang, C.; Li, Y.; Lin, H.B.; Yang, B.J. Signal preserving and seismic random noise attenuation by Hurst exponent based time-frequency peak filtering. Geophys. J. Int.
**2015**, 203, 901–909. [Google Scholar] [CrossRef] - Zhuang, G.H.; Li, Y.; Wu, N.; Tian, Y.N. Curvature-varying hyperbolic trace TFPF for seismic random noise attenuation. IEEE Geosci. Remote Sens. Lett.
**2015**, 12, 2252–2256. [Google Scholar] [CrossRef] - Zhang, J.; Li, Y.; Wu, N. Noise attenuation for seismic data by Hyperbolic-Trace time-frequency peak filtering. IEEE Geosci. Remote Sens. Lett.
**2015**, 12, 601–605. [Google Scholar] [CrossRef] - Shen, C.; Li, J.; Zhang, X.M.; Shi, Y.B.; Tang, J.; Cao, H.L.; Liu, J. A noise reduction method for dual-mass micro-electromechanical gyroscope based on sample entropy empirical mode decomposition and time-frequency peak filtering. Sensors
**2016**, 16, 1–14. [Google Scholar] [CrossRef] [PubMed] - Van, M.; Kang, H.J.; Shin, K.S. Rolling element bearing fault diagnosis based on non-local means de-noising and empirical mode decomposition. IET Sci. Meas. Technol.
**2014**, 8, 571–578. [Google Scholar] [CrossRef] - Cui, B.B.; Chen, X.Y. Improved hybrid filter for fiber optic gyroscope signal denoising based on EMD and forward linear prediction. Sens. Actuators A Phys.
**2015**, 230, 150–155. [Google Scholar] [CrossRef] - Yang, Z.X.; Zhong, J.H. A hybrid EEMD-based SampEn and SVD for acoustic signal processing and fault diagnosis. Entropy
**2016**, 18, 1–14. [Google Scholar] [CrossRef] - Zhao, L.N.; Wei, S.S.; Zhang, C.Q.; Zhang, Y.T.; Jiang, X.G.; Liu, F.; Liu, C.Y. Determination of sample entropy and fuzzy measure entropy parameters for distinguishing congestive heart failure from normal sinus rhythm subjects. Entropy
**2015**, 17, 6270–6288. [Google Scholar] [CrossRef] - Eva, C.R.; David, C.F.; Pau, M.M.; Sandra, O.C. Comparative study of entropy sensitivity to missing biosignal data. Entropy
**2014**, 16, 5901–5918. [Google Scholar]

Standard Deviation (m/s^{2}) | Computation Time (s) | |
---|---|---|

TFPF | 9.797 | 0.76 |

SE-LMD-TFPF | 8.474 | 2.85 |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ning, S.; Han, Z.; Wang, Z.; Wu, X.
Application of Sample Entropy Based LMD-TFPF De-Noising Algorithm for the Gear Transmission System. *Entropy* **2016**, *18*, 414.
https://doi.org/10.3390/e18110414

**AMA Style**

Ning S, Han Z, Wang Z, Wu X.
Application of Sample Entropy Based LMD-TFPF De-Noising Algorithm for the Gear Transmission System. *Entropy*. 2016; 18(11):414.
https://doi.org/10.3390/e18110414

**Chicago/Turabian Style**

Ning, Shaohui, Zhennan Han, Zhijian Wang, and Xuefeng Wu.
2016. "Application of Sample Entropy Based LMD-TFPF De-Noising Algorithm for the Gear Transmission System" *Entropy* 18, no. 11: 414.
https://doi.org/10.3390/e18110414