Is Gravity Entropic Force?
Abstract
:1. Introduction
2. Relations between Gravity and Thermodynamics
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Cocke, W.J. A maximum entropy principle in general relativity and the stability of fluid spheres. Ann. Inst. Henri Poincaré 1965, 2, 283–306. [Google Scholar]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys 1975, 43, 199–220. [Google Scholar]
- Davies, P.C.W. Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 1975, 8, 609–616. [Google Scholar]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14. [Google Scholar] [CrossRef]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, 3427–3431. [Google Scholar]
- Iyer, V.; Wald, R.M. Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 1994, 50, 846–864. [Google Scholar]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett 1995, 75, 1260–1263. [Google Scholar]
- Eling, C.; Guedens, R.; Jacobson, T. Non-equilibrium thermodynamics of spacetime. Phys. Rev. Lett 2006, 96, 121301. [Google Scholar]
- Elizalde, E.; Silva, P.J. F(R) gravity equation of state. Phys. Rev. D 2008, 78, 061501. [Google Scholar]
- Brustein, R.; Hadad, M. The Einstein equations for generalized theories of gravity and the thermodynamic relation delta Q = TδS are equivalent. Phys. Rev. Lett 2009, 103, 101301. [Google Scholar]
- Makela, J.; Peltola, A. Gravitation and thermodynamics: The Einstein equation of state revisited. Int. J. Mod. Phys. D 2009, 18, 669–689. [Google Scholar]
- Padmanabhan, T. Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quan. Gravity 2002, 19, 5387–5408. [Google Scholar]
- Paranjape, A.; Sarkar, S.; Padmanabhan, T. Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 2006, 74, 104015. [Google Scholar]
- Kothawala, D.; Sarkar, S.; Padmanabhan, T. Einstein’s equations as a thermodynamic identity: The Cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Lett. B 2007, 652, 338–342. [Google Scholar]
- Padmanabhan, T. Thermodynamical Aspects of Gravity: New insights. Rep. Prog. Phys 2010, 73, 046901. [Google Scholar]
- Gao, S. A general maximum entropy principle for self-gravitating perfect fluid. Phys. Rev. D 2011, 84, 104023. [Google Scholar]
- Bamba, K.; Geng, C.Q.; Nojiri, S.; Odintsov, S.D. Equivalence of modified gravity equation to the Clausius relation. Europhys. Lett 2010, 89, 50003. [Google Scholar]
- Bracken, P. The Einstein–Hilbert Action Horizons and Connections with Thermodynamics. Adv. Stud. Theor. Phys 2012, 6, 83–93. [Google Scholar]
- Parattu, K.; Majhi, B.R.; Padmanabhan, T. Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm. Phys. Rev. D 2013, 87, 124011. [Google Scholar]
- Verlinde, E.P. On the Origin of Gravity and the Laws of Newton. J. High Energy Phys 4, 029. [CrossRef]
- Gao, C. Modified Entropic Force. Phys. Rev. D 2010, 81, 087306. [Google Scholar]
- Li, M.; Wang, Y. Quantum UV/IR Relations and Holographic Dark Energy from Entropic Force. Phys. Lett. B 2010, 687, 243–247. [Google Scholar]
- Cai, Y.-F.; Saridakis, E.N. Inflation in Entropic Cosmology: Primordial Perturbations and non-Gaussianities. Phys. Lett. B 2011, 697, 280–287. [Google Scholar]
- Hendi, S.H.; Sheykhi, A. Entropic Corrections to Einstein Equations. Phys. Rev. D 2011, 83, 084012. [Google Scholar]
- Yang, R. The thermal entropy density of spacetime. Entropy 2013, 15, 156–161. [Google Scholar]
- Gao, S.; Wald, R. Physical process version of the first law and the generalized second law for charged and rotating black holes. Phys. Rev. D 2001, 64, 084020. [Google Scholar]
- Wald, R.M. General Relativity; The University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Gourgoulhon, E. 3+1 Formalism and Bases of Numerical Relativity. 2007. arXiv:gr-qc/0703035. [Google Scholar]
- Fang, X.; Gao, S. General proof of the entropy principle for self-gravitating fluid in static spacetimes. 2013. arXiv:1311.6899. [Google Scholar]
- Green, S.R.; Schiffrin, J.S.; Wald, R.M. Dynamic and Thermodynamic Stability of Relativistic, Perfect Fluid Stars. Class. Quantum Gravity 2014, 31, 035023. [Google Scholar]
- Kobakhidze, A. Gravity is not an entropic force. Phys. Rev. D 2011, 83, 021502. [Google Scholar]
- Gao, S. Is gravity an entropic force. Entropy 2011, 13, 936–948. [Google Scholar]
- Tolman, R.C. On the Weight of Heat and Thermal Equilibrium in General Relativity. Phys. Rev 1930, 35. [Google Scholar] [CrossRef]
- Tolman, R.C.; Ehrenfest, P. Temperature Equilibrium in a Static Gravitational Field. Phys. Rev 1930, 36. [Google Scholar] [CrossRef]
- Rovelli, C.; Smerlak, M. Thermal time and the Tolman-Ehrenfest effect: Temperature as the “speed of time”. Class. Quantum Gravity 2011, 28, 075007. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, R. Is Gravity Entropic Force? Entropy 2014, 16, 4483-4488. https://doi.org/10.3390/e16084483
Yang R. Is Gravity Entropic Force? Entropy. 2014; 16(8):4483-4488. https://doi.org/10.3390/e16084483
Chicago/Turabian StyleYang, Rongjia. 2014. "Is Gravity Entropic Force?" Entropy 16, no. 8: 4483-4488. https://doi.org/10.3390/e16084483