Examples of the Application of Nonparametric Information Geometry to Statistical Physics
Abstract
:1. Introduction
2. Model Spaces
2.1. Cumulant Generating Functional
- For , and :
- is a power series from to , with radius of convergence .
- The superposition mapping, , is an analytic function from the open unit ball of to .
- ; otherwise, for each , .
- is convex and lower semi-continuous, and its proper domain is a convex set that contains the open unit ball of ; in particular, the interior of the proper domain is a non-empty open convex set denoted .
- is infinitely Gâteaux-differentiable in the interior of its proper domain.
- is bounded, infinitely Fréchet-differentiable and analytic on the open unit ball of .
3. Exponential Manifold
- are connected by an open exponential arc, ;
- ;
- ;
- belongs to both and .
- 5.
- and are equal as vector spaces and their norms are equivalent.
- The first three derivatives of on are:
- The random variable, , belongs to and:
- The mapping, , is monotonic:
- The weak derivative of the map, , at u applied to is given by:
- The mapping, , is an isomorphism of onto . It is called the mixture transport or m-transport.
- .
- with , in particular .
- is defined by an orthogonality property:
- The mapping, , is an isomorphism of onto . It is called the exponential transport or e-transport.
3.1. Tangent Bundle
- Assume is differentiable with derivative . Define:
- On the set , the charts:
- As is a linear operator on , is a linear operator on , which does not depend on p.
- If G is a vector field in , the covariant derivative is:
- Assume moreover that can be identified with an element, , by:
- Assume , so that and:
- Compute the derivative of when .
- It is a computation based on:
3.2. Pretangent Bundle
3.3. The Hilbert Bundle
- For all , the mapping:
- , and .
3.4. The Second Tangent Bundle
4. Applications
4.1. Expected Value
4.2. Kullback-Leibler Divergence
4.3. Boltzmann-Gibbs Entropy
4.4. Boltzmann Equation
- If , then is the conditional expectation of , given and .
- Assume , ; then and:
- (1)
- Product: ;
- (2)
- Interaction: ;
- (3)
- Conditioning: ;
- (4)
- Marginalization.
5. Conclusions and Discussion
Acknowledgments
Conflicts of Interest
References
- Amari, S.; Nagaoka, H. Methods of Information Geometry; Translated from the 1993 Japanese original by Daishi Harada; American Mathematical Society: Providence, RI, USA, 2000; p. x+206. [Google Scholar]
- Dawid, A.P. Discussion of a paper by Bradley Efron. Ann. Stat. 1975, 3, 1231–1234. [Google Scholar]
- Dawid, A.P. Some comments on a paper by Bradley Efron. Ann. Statist. 1975, 3, 1189–1242. [Google Scholar]
- Dawid, A.P. Further comments on “Some comments on a paper by Bradley Efron". Ann. Stat. 1977, 5. No. 6. [Google Scholar] [CrossRef]
- Pistone, G.; Sempi, C. An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 1995, 23, 1543–1561. [Google Scholar] [CrossRef]
- Gibilisco, P.; Pistone, G. Connections on non-parametric statistical manifolds by Orlicz space geometry. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1998, 1, 325–347. [Google Scholar] [CrossRef]
- Pistone, G.; Rogantin, M. The exponential statistical manifold: Mean parameters, orthogonality and space transformations. Bernoulli 1999, 5, 721–760. [Google Scholar] [CrossRef]
- Gibilisco, P.; Isola, T. Connections on statistical manifolds of density operators by geometry of noncommutative Lp-spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1999, 2, 169–178. [Google Scholar] [CrossRef]
- Cena, A. Geometric Structures on the Non-Parametric Statistical Manifold. Ph.D. Thesis, Università di Milano, Milano, Italy, 2002. [Google Scholar]
- Cena, A.; Pistone, G. Exponential statistical manifold. Ann. Inst. Stat. Math. 2007, 59, 27–56. [Google Scholar] [CrossRef]
- Imparato, D. Exponential Models and Fisher Information–Geometry and Applications. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2008. [Google Scholar]
- Pistone, G. κ-exponential models from the geometrical viewpoint. Eur. Phys. J. B Condens. Matter Phys. 2009, 71, 29–37. [Google Scholar] [CrossRef]
- Pistone, G. Algebraic Varieties vs. Differentiable Manifolds in Statistical Models. In Algebraic and Geometric Methods in Statistics; Gibilisco, P., Riccomagno, E., Rogantin, M., Wynn, H.P., Eds.; Cambridge University Press: London, UK, 2009; Chapter 21; pp. 339–363. [Google Scholar]
- Pistone, G. Nonparametric Information Geometry. In Proceedins of the First International Conference Geometric Science of Information, GSI 2013; Paris, France, 28–30 August 2013, Nielsen, F., Barbaresco, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 5–36. [Google Scholar]
- Bourbaki, N. Variétés Differentielles et Analytiques. Fascicule de Résultats / Paragraphes 1 à 7 (in French); Number XXXIII in Éléments de mathématiques; Hermann: Paris, France, 1971. [Google Scholar]
- Abraham, R.; Marsden, J.E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications, 2nd ed.; Applied Mathematical Sciences; Springer: New York, NY, USA, 1988; Volume 75, p. x+654. [Google Scholar]
- Lang, S. Differential and Riemannian Manifolds, 3rd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1995; Volume 160, p. xiv+364. [Google Scholar]
- Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1983; Volume 1034, p. iii+222. [Google Scholar]
- Shima, H. The Geometry of Hessian Structures; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2007; p. xiv+246. [Google Scholar]
- Villani, C. A Review of Mathematical Topics in Collisional Kinetic Theory. In Handbook of Mathematical Fluid Dynamics; North-Holland: Amsterdam, The Netherlands, 2002; Volume I, pp. 71–305. [Google Scholar]
- Grasselli, M.R. Dual Connections in Nonparametric Classical Information Geometry. 2001. arXiv:math-ph/0104031v1. [Google Scholar] [CrossRef]
- Brown, L.D. Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory; Number 9 in IMS Lecture Notes; Monograph Series; Institute of Mathematical Statistics: Hayward, CA, USA, 1986; p. x+283. [Google Scholar]
- Grasselli, M.R. Dual connections in nonparametric classical information geometry. Ann. Inst. Stat. Math. 2010, 62, 873–896. [Google Scholar] [CrossRef]
- Amari, S.I. Natural gradient works efficiently in learning. Neural Comput. 1998, 10, 251–276. [Google Scholar] [CrossRef]
- Malagò, L.; Matteucci, M.; Dal Seno, B. An Information Geometry Perspective On Estimation of Distribution Algorithms: Boundary Analysis. In Proceedings of the 2008 GECCO Conference Companion on GENETIC and Evolutionary Computation, GECCO ’08, Atlanta, GA, USA, 12–16 July 2008; ACM: New York, NY, USA, 2008; pp. 2081–2088. [Google Scholar]
- Malagò, L.; Matteucci, M.; Pistone, G. Stochastic Relaxation as a Unifying Approach in 0/1 Programming; NIPS 2009 workshop on discrete optimization in machine learning: submodularity, sparsity & polyhedra (DISCML); Whistler Resort & Spa: Whistler, BC, Canada, 2001. [Google Scholar]
- Malagò, L.; Matteucci, M.; Pistone, G. Towards the Geometry of Estimation of Distribution Algorithms Based on the Exponential Family. In Proceedings of the 11th Workshop on Foundations of Genetic Algorithms, FOGA ’11, Schwarzenberg, Austria, 5–8 January 2011; ACM: New York, NY, USA, 2011; pp. 230–242. [Google Scholar]
- Wierstra, D.; Schaul, T.; Glasmachers, T.; Sun, Y.; Schmidhuber, J. Natural evolution strategies. 2011. arXiv:1106.4487. [Google Scholar]
- Arnold, L.; Auger, A.; Hansen, N.; Ollivier, Y. Information-geometric optimization algorithms:A unifying picture via invariance principles. 2011. arXiv:1106.3708. [Google Scholar]
- Malagò, L. On the Geometry of Optimization Based on the Exponential Family Relaxation. Ph.D. Thesis, Politecnico di Milano, Milano, Italy, 2012. [Google Scholar]
- Malagò, L.; Matteucci, M.; Pistone, G. Natural Gradient, Fitness Modelling and Model Selection: A Unifying Perspective. In Proceedins of the 2013 IEEE Congress on Evolutionary Computation, IEEE CEC 2013, Paper #1747. Cancún, México, 20–23 June 2013.
- Appell, J.; Zabrejko, P.P. Nonlinear Superposition Operators; Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 1990; Volume 95, p. viii+311. [Google Scholar]
- Ambrosio, L.; Gigli, N.; Savaré, G. Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed.; Lectures in Mathematics ETH Zürich; Birkhäuser Verlag: Basel, Switzerland, 2008; p. x+334. [Google Scholar]
- Majewski, W.A.; Labuschagne, L.E. On applications of Orlicz spaces to statistical physics. Ann. Henry Poincaré 2013. [Google Scholar] [CrossRef] [Green Version]
- Naudts, J. Generalised Thermostatistics; Springer: London, UK, 2011; p. x+201. [Google Scholar]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [PubMed]
- Trivellato, B. Deformed exponentials and applications to finance. Entropy 2013, 15, 3471–3489. [Google Scholar] [CrossRef]
- Vigelis, R.F.; Cavalcante, C.C. On ϕ-families of probability distributions. J. Theor. Probab. 2013, 26, 870–884. [Google Scholar] [CrossRef]
- Ay, N.; Jost, J.; Lê, H.V.; Schwachhöfer, L. Information geometry and sufficient statistics. 2013. arXiv:1207.6736. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pistone, G. Examples of the Application of Nonparametric Information Geometry to Statistical Physics. Entropy 2013, 15, 4042-4065. https://doi.org/10.3390/e15104042
Pistone G. Examples of the Application of Nonparametric Information Geometry to Statistical Physics. Entropy. 2013; 15(10):4042-4065. https://doi.org/10.3390/e15104042
Chicago/Turabian StylePistone, Giovanni. 2013. "Examples of the Application of Nonparametric Information Geometry to Statistical Physics" Entropy 15, no. 10: 4042-4065. https://doi.org/10.3390/e15104042
APA StylePistone, G. (2013). Examples of the Application of Nonparametric Information Geometry to Statistical Physics. Entropy, 15(10), 4042-4065. https://doi.org/10.3390/e15104042