The Thermal Entropy Density of Spacetime
Abstract
:1. Introduction
2. Thermal Entropy Density of Spacetime
3. Conclusions
Acknowledgments
References
- Cocke, W.J. A maximum entropy principle in general relativity and the stability of fluid spheres. Ann. Inst. Henri Poincaré 1965, 2, 283. [Google Scholar]
- Bekenstein, J.D. Black holes and entropy-Bekenstein. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Davies, P.C.W. Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 1975, 8, 609–616. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, 3427–3431. [Google Scholar] [CrossRef]
- Iyer, V.; Wald, R.M. Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 1994, 50, 846–864. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of sacetime: The einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Eling, C.; Guedens, R.; Jacobson, T. Non-equilibrium thermodynamics of spacetime. Phys. Rev. Lett. 2006, 96, 121301. [Google Scholar] [CrossRef] [PubMed]
- Elizalde, E.; Silva, P.J. F(R) gravity equation of state. Phys. Rev. D 2008, 78, 061501. [Google Scholar] [CrossRef]
- Brustein, R.; Hadad, M. The Einstein equations for generalized theories of gravity and the thermodynamic relation delta Q=TδS are equivalent. Phys. Rev. Lett. 2009, 103, 101301. [Google Scholar] [CrossRef] [PubMed]
- Makela, J.; Peltola, A. Gravitation and thermodynamics: The Einstein equation of state revisited. Int. J. Mod. Phys. D 2009, 18, 669–689. [Google Scholar] [CrossRef]
- Padmanabhan, T. Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quan. Grav. 2002, 19, 5387–5408. [Google Scholar] [CrossRef]
- Paranjape, A.; Sarkar, S.; Padmanabhan, T. Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 2006, 74, 104015. [Google Scholar] [CrossRef]
- Kothawala, D.; Sarkar, S.; Padmanabhan, T. Einstein’s equations as a thermodynamic identity: The Cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Lett. B 2007, 652, 338–342. [Google Scholar] [CrossRef]
- Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef]
- Wu, S.F.; Wang, B.; Ge, X.H.; Yang, G.H. Gravitational thermodynamics and universal holographic duality in dynamical spacetimes. arXiv:1109.0193.
- Gao, S. A general maximum entropy principle for self-gravitating perfect fluid. Phys. Rev. D 2011, 84, 104023. [Google Scholar] [CrossRef]
- Danielsson, U.H. Transplanckian energy production and slow roll inflation. Phys. Rev. D 2005, 71, 023516. [Google Scholar] [CrossRef]
- Frolov, A.V.; Kofman, L. Inflation and de Sitter thermodynamics. J. Cosmol. Astropart. Phys. 2003, 05, 009. [Google Scholar] [CrossRef] [PubMed]
- Calcagni, G. de Sitter thermodynamics and the braneworld. J. High Energy Phys. 2005, 0509, 060. [Google Scholar] [CrossRef]
- Cai, R.G.; Kim, S.P. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. J. High Energy Phys. 2005, 02, 050. [Google Scholar] [CrossRef]
- Cai, R.G.; Cao, L.M.; Ohta, N. Unified first law and thermodynamics of apparent horizon in FRW universe. Phys. Rev. D 2010, 81, 061501(R). [Google Scholar] [CrossRef]
- Akbar, M.; Cai, R.G. Thermodynamic behavior of friedmann equations at apparent horizon of FRW universe. Phys. Rev. D 2007, 75, 084003. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, A. The Friedmann equations and thermodynamics of apparent horizons. Phys. Rev. Lett. 2007, 99, 211301. [Google Scholar] [CrossRef] [PubMed]
- Sheykhi, A.; Wang, B.; Cai, R.G. Deep connection between thermodynamics and gravity in Gauss-Bonnet braneworld. Phys. Rev. D 2007, 76, 023515. [Google Scholar] [CrossRef]
- Wu, S.F.; Wang, B.; Yang, G.H. Thermodynamics on the apparent horizon in generalized gravity theories. Nucl. Phys. B 2008, 799, 330–344. [Google Scholar] [CrossRef]
- Yang, R.-J. Bound on the equation of state of dark energy from the Generalized second law of thermodynamics. Int. J. Theor. Phys. 2012, 51, 1692. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Nojiri, S.; Odintsov, S.D. Equivalence of modified gravity equation to the Clausius relation. Europhys. Lett. 2010, 89, 50003. [Google Scholar] [CrossRef]
- Verlinde, E.P. On the origin of gravity and the laws of newton. J. High Energy Phys. 2011, 4, 029. [Google Scholar] [CrossRef]
- Bracken, P. The Einstein-Hilbert Action Horizons and Connections with Thermodynamics. arXiv:1111.5068.
- Wald, R.M. General Relativity; The University of Chicago Press: Chicago, USA, 1984. [Google Scholar]
- Gourgoulhon, E. 3+1 Formalism and Bases of Numerical Relativity. arXiv:gr-qc/0703035.
- Yang, R.-J. Thermal entropy density in co-moving spacetime. Unpublished work.
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the Greneral Theory of Relativity; John Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
© 2013 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, R. The Thermal Entropy Density of Spacetime. Entropy 2013, 15, 156-161. https://doi.org/10.3390/e15010156
Yang R. The Thermal Entropy Density of Spacetime. Entropy. 2013; 15(1):156-161. https://doi.org/10.3390/e15010156
Chicago/Turabian StyleYang, Rongjia. 2013. "The Thermal Entropy Density of Spacetime" Entropy 15, no. 1: 156-161. https://doi.org/10.3390/e15010156