# Use of Maximum Entropy Modeling in Wildlife Research

## Abstract

**:**

## 1. Introduction

## 2. What is Maxent?

#### 2.1. Model output

#### 2.2. Variable response

#### 2.3. Model evaluation

## 3. Strengths of Maxent

#### 3.1. Sampling effort

#### 3.2. Spatial error of location data

#### 3.3. Mapping feature

## 4. Potential Weaknesses of Maxent

#### 4.1. Transferability

#### 4.2. Model evaluation

#### 4.3. Model selection

## 5. Needed Advancements in Maxent

#### 5.1. Threshold development

#### 5.2. Model selection

#### 5.3. Repeated sampling of known individuals

**Table 1.**Studies involving wildlife that have used maximum entropy modeling to relate distributional patterns to stated objectives.

Reference | Species | Location | Objective |
---|---|---|---|

[16] | Geckos (Uroplatus spp.) | Madagascar | Predict species distributions |

[10] | American black bear (Ursus americanus) | North-central Colorado, USA | Assess denning habitat |

[36] | Bush dog (Speothos venaticus) | Central and South America | Evaluate quality of protection and direct research effort through species distributions |

[32] | Little bustard (Tetrax tetrax) | Central Spain | Model seasonal changes in distribution |

[12] | Sage grouse (Centrocercus urophasianus) | Southern Oregon, USA | Predict and map nesting habitat |

[37] | Brown-backed bearded sakis (Chiropotes israelita) Black uakaris (Cacajao spp.) | Western Amazon, Brazil | Model geographical distributions and fundamental niches |

[38] | Cuban treefrog (Osteopilus sepentrionalis) | Caribbean and Gulf of Mexico | Assess potential distribution of invasive species |

[20] | Asian slow lorises (Nycticebus spp.) | Southeast Asia | Assess threats and set conservation priorities through species distributions |

[13] | Mule deer (Odocoileus hemionus) Gemsbok (Oryx gazella) | South-central New Mexico, USA | Assess habitat use |

## 6. Conclusions

## Acknowledgements

## References and Notes

- MacKenzie, D.K.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Royle, J.A.; Langtimm, C.A. Estimating site occupancy rates when detection probabilities are less than one. Ecology
**2002**, 83, 2248–2255. [Google Scholar] [CrossRef] - Gu, W.; Swihart, R.K. Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biol. Conserv.
**2004**, 116, 195–203. [Google Scholar] [CrossRef] - Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; Li, J.; Lohmann, L.G.; Loiselle, B.A.; Manion, G.; Moritz, C.; Nakamura, M.; Nakazawa, Y.; Overton, J.M.; Peterson, A.T.; Phillips, S.J.; Richardson, K.S.; Scachetti-Pereira, R.; Schapire, R.E.; Soberón, J.; Williams, S.; Wisz, M.S.; Zimmermann, N.E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography
**2006**, 29, 129–151. [Google Scholar] [CrossRef] - Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography
**2006**, 29, 773–785. [Google Scholar] [CrossRef] - Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model.
**2006**, 190, 231–259. [Google Scholar] [CrossRef] - Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent software for species habitat modeling, version 3.3.1. Available online: http://www.cs.princeton.edu/~schapire/maxent/ (accessed on August 19, 2009).
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the 21st International Conference on Machine Learning; ACM Press: New York, NY, USA, 2004; pp. 655–662. [Google Scholar]
- Grendár, M., Jr.; Grendár, M. Maximum entropy: Clearing up mysteries. Entropy
**2001**, 3, 58–63. [Google Scholar] [CrossRef] - Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography
**2008**, 31, 161–175. [Google Scholar] [CrossRef] - Baldwin, R.B.; Bender, L.C. Den-site characteristics of black bears in Rocky Mountain National Park, Colorado. J. Wildl. Manag.
**2008**, 72, 1717–1724. [Google Scholar] [CrossRef] - Phillips, S.J. A brief tutorial on Maxent, versions: 3.3.1. Available online: http://www.cs.princeton.edu/~schapire/maxent/ (accessed on August 19, 2009).
- Yost, A.C.; Petersen, S.L.; Gregg, M.; Miller, R. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecol. Inform.
**2008**, 3, 375–386. [Google Scholar] [CrossRef] - Hoenes, B.D.; Bender, L.C. Relative habitat and browse use of native desert mule deer and exotic oryx in the greater San Andres Mountains, New Mexico. Human–Wildlife Conflicts
**2010**, (in press). [Google Scholar] - Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv.
**1997**, 24, 38–49. [Google Scholar] [CrossRef] - Engler, R.; Guisan, A.; Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol.
**2004**, 41, 263–274. [Google Scholar] [CrossRef] - Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr.
**2007**, 34, 102–117. [Google Scholar] [CrossRef] - Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Diversity Distrib.
**2008**, 14, 763–773. [Google Scholar] [CrossRef] - Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl.
**2009**, 19, 181–197. [Google Scholar] [CrossRef] [PubMed] - Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Peterson, A.T.; Loiselle, B.A. The NCEAS Predicting Species Distributions Working Group. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol.
**2008**, 45, 239–247. [Google Scholar] [CrossRef] - Thorn, J.S.; Nijman, V.; Smith, D.; Nekaris, K.A.I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib.
**2009**, 15, 289–298. [Google Scholar] [CrossRef] - Peterson, A.T.; Papeş, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography
**2007**, 30, 550–560. [Google Scholar] [CrossRef] - Phillips, S.J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography
**2008**, 31, 272–278. [Google Scholar] [CrossRef] - Swets, J.A. Measuring the accuracy of diagnostic systems. Science
**1988**, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] - Elith, J.; Leathwick, J. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib.
**2007**, 13, 265–275. [Google Scholar] [CrossRef] - Raes, N.; ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography
**2007**, 30, 727–736. [Google Scholar] [CrossRef] - Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography
**2005**, 28, 385–393. [Google Scholar] [CrossRef] - Pearson, R.G. Species’ distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. 2008. Available online: http://ncep.amnh.org (accessed on November 3, 2009).
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas.
**1960**, 20, 37–46. [Google Scholar] [CrossRef] - Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol.
**2006**, 43, 1223–1232. [Google Scholar] [CrossRef] - Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model.
**2000**, 133, 225–245. [Google Scholar] [CrossRef] - Freeman, E.A.; Moisen, G.G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model.
**2008**, 217, 48–58. [Google Scholar] [CrossRef] - Suárez-Seoane, S.; García de la Morena, E.L.; Morales Prieto, M.B.; Osborne, P.E.; de Juana, E. Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution. Ecol. Model.
**2008**, 219, 17–29. [Google Scholar] [CrossRef] - Levine, R.S.; Yorita, K.L.; Walsh, M.C.; Reynolds, M.G. A method for statistically comparing spatial distribution maps. Int. J. Health Geogr. 2009, 8, p. 7. Available online: http://www.ij-healthgeographics.com/content/8/1/7 (accessed on August 19, 2009). [CrossRef] [PubMed]
- Burnham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. Bayesian measures of model complexity and fit. J. Roy. Stat. Soc. B Met.
**2003**, 64, 583–639. [Google Scholar] [CrossRef] - DeMatteo, K.E.; Loiselle, B.A. New data on the status and distribution of the bush dog (Speothos venaticus): Evaluating its quality of protection and directing research efforts. Biol. Conserv.
**2008**, 141, 2494–2505. [Google Scholar] [CrossRef] - Boubli, J.P.; de Lima, M.G. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in northwestern Amazonia via a maximum entropy algorithm. Int. J. Primatol.
**2009**, 30, 217–228. [Google Scholar] [CrossRef] - Rödder, D.; Weinsheimer, F. Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? J. Nat. Hist.
**2009**, 43, 1207–1217. [Google Scholar] [CrossRef] - Baldwin, R.A. Population demographics, habitat utilization, critical habitats, and condition of black bears in Rocky Mountain National Park, Colorado. Ph.D. dissertation, New Mexico State University, Las Cruces, NM, USA, 2008. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Baldwin, R.A.
Use of Maximum Entropy Modeling in Wildlife Research. *Entropy* **2009**, *11*, 854-866.
https://doi.org/10.3390/e11040854

**AMA Style**

Baldwin RA.
Use of Maximum Entropy Modeling in Wildlife Research. *Entropy*. 2009; 11(4):854-866.
https://doi.org/10.3390/e11040854

**Chicago/Turabian Style**

Baldwin, Roger A.
2009. "Use of Maximum Entropy Modeling in Wildlife Research" *Entropy* 11, no. 4: 854-866.
https://doi.org/10.3390/e11040854