The Experience Paradox: Problematizing a Common Digital Trace Proxy on Crowdfunding Platforms
Abstract
1. Introduction
2. Theoretical Background and Hypothesis Development
2.1. A Framework for Proxy Ambiguity and Interpretation
2.2. Hypothesis Development
2.2.1. Analytical Communication Style as a Dynamic Signal (H1)
2.2.2. The “Experience Paradox”: Non-Linear Associations of the Activity Proxy (H2)
2.2.3. Non-Linear Interaction Between Signals (H3 and H3a)
2.2.4. Exploring Associative Pathways (H4)
3. Methodology
3.1. Research Context: Kickstarter Platform
3.2. Data Collection and Sample Construction
3.3. Variable Operationalization
3.4. Analytical Strategy
4. Results
4.1. Hypothesis Testing: Direct and Interactive Associations
4.2. Exploring Associative Pathways (H4)
4.3. Robustness and Context Dependency
5. Discussion
5.1. Theoretical and Methodological Contributions
5.2. Managerial Implications for Information Systems Practice
- Trend Analysis vs. Totals: Visualizing the trajectory of success rates and backer feedback sentiment over recent projects (e.g., the last five), rather than just cumulative totals.
- Novelty Indicators: Implementing a metric (e.g., based on textual analysis) that quantifies how distinct the current project is from the creator’s previous work, addressing the risk of stagnation.
- Category-Specific Benchmarks: Crucially, benchmarking all metrics against the norms of the specific project category (e.g., comparing activity relative to the ‘Software’ average). This multi-dimensional approach directly addresses the proxy ambiguity revealed in our study, providing the necessary context for accurate evaluation.
5.3. Limitations and Future Research Roadmap
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Variable Name | Definition and Operationalization |
|---|---|
| log_pledged | Natural logarithm of (1 + the final pledged amount in USD). |
| log_backers_count | Natural logarithm of (1 + the total number of unique backers). |
| log_experience | Natural logarithm of (1 + the number of previously launched projects by the same creator ID). |
| log_experience_c | Mean-centered version of log_experience. |
| log_experience_c_sq | Square of log_experience_c. Used for non-linear tests. |
| mean_update_Analytic | Average LIWC “Analytical Thinking” score across all project updates for a campaign. |
| mean_update_Analytic_c | Mean-centered version of mean_update_Analytic. |
| log_shown_comments | Natural logarithm of (1 + count of comments displayed on project page). |
| mean_update_Authentic | Average LIWC “Authenticity” score across updates. |
| mean_update_Clout | Average LIWC “Clout” score across updates. |
| log_goal | Natural logarithm of (1 + funding goal in USD). |
| duration | Campaign duration in days. |
| log_creator_backing | Natural logarithm of (1 + count of projects backed by the creator). |
| facebook_connected | Binary variable: 1 if creator’s Facebook account is linked, 0 otherwise. |
| staff_pick | Binary variable: 1 if designated as a Kickstarter Staff Pick, 0 otherwise. |
| log_update_count | Natural logarithm of (1 + number of updates posted). |
| log_story_images | Natural logarithm of (1 + count of images in project description). |
| log_story_videos | Natural logarithm of (1 + count of videos in project description). |
| subcategory_id | Identifier for project subcategory. Used for fixed effects. |
| category_group | Factor grouping subcategories. Used in subgroup analysis. |
| Model Specification Component | Maximum Observed VIF | Assessment |
|---|---|---|
| Model with Linear Terms and Controls | <3.0 | Low concern |
| Model with Interaction Term (H3) | <4.5 | Acceptable |
| Model with Squared Term (H2) | <4.0 | Acceptable |
| Model with Non-Linear Interaction (H3a) | <4.5 | Acceptable |
| Outcome | Mediator | AMA (Indirect) | p-Value | ADA (Direct) | p-Value |
|---|---|---|---|---|---|
| log_pledged | log_shown_comments_c | 0.043 | <0.001 *** | −0.075 | <0.001 *** |
| mean_update_Analytic_c | 0.006 | 0.192 | −0.039 | 0.12 | |
| mean_update_Authentic_c | 0.002 | 0.372 | −0.035 | 0.204 | |
| mean_update_Clout_c | −0.025 | <0.001 *** | −0.007 | 0.756 | |
| log_backers_count | log_shown_comments_c | 0.046 | 0.004 ** | −0.074 | <0.001 *** |
| mean_update_Analytic_c | 0.001 | 0.224 | −0.03 | 0.084 | |
| mean_update_Authentic_c | 0.001 | 0.444 | −0.03 | 0.1 | |
| mean_update_Clout_c | −0.011 | <0.001 *** | −0.018 | 0.376 |
| Predictor | AltProxy Pledged | Subgroup HW/Tech Pledged | Subgroup SW/Web Pledged | Robust Trim 1% Pledged |
|---|---|---|---|---|
| Upd Analytic (C) | 0.014 *** (0.001) | 0.011 *** (0.001) | 0.013 *** (0.002) | 0.015 *** (0.001) |
| Experience (C) | - | 0.135 * (0.041) | −0.516 * (0.099) | 0.024 (0.035) |
| Exp(C) × UpdAn(C) | - | −0.003 * (0.001) | −0.007 * (0.003) | −0.008 * (0.001) |
| Alternative Proxy | ||||
| Alt Proxy (C) | 0.090 *** (0.015) | - | - | - |
| Alt Proxy × UpdAn(C) | −0.001 (0.001) | - | - | - |
| N | 16,407 | 9247 | 4227 | 16,242 |
| R2 | 0.707 | 0.703 | 0.456 | 0.698 |
| Adj. R2 | 0.707 | 0.702 | 0.454 | 0.698 |
References
- Agarwal, R.; Gupta, A.K.; Kraut, R. Editorial overview—The interplay between digital and social networks. Inf. Syst. Res. 2008, 19, 243–252. [Google Scholar] [CrossRef]
- Markus, M.L.; Mentzer, K. Foresight for a responsible future with ICT. Inf. Syst. Front. 2014, 16, 353–368. [Google Scholar] [CrossRef]
- McIntyre, D.P.; Srinivasan, A. Networks, platforms, and strategy: Emerging views and next steps. Strateg. Manag. J. 2017, 38, 141–160. [Google Scholar] [CrossRef]
- McAfee, A.; Brynjolfsson, E. Machine, Platform, Crowd: Harnessing our Digital Future; WW Norton & Company: New York, NY, USA, 2017. [Google Scholar]
- George, G.; Osinga, E.C.; Lavie, D.; Scott, B.A. Big data and data science methods for management research. Acad. Manag. J. 2016, 59, 1493–1507. [Google Scholar] [CrossRef]
- Ketokivi, M.; McIntosh, C.N. Addressing the endogeneity dilemma in operations management research: Theoretical, empirical, and pragmatic considerations. J. Oper. Manag. 2017, 52, 1–14. [Google Scholar] [CrossRef]
- Christin, A. Algorithms in practice: Comparing web journalism and criminal justice. Big Data Soc. 2017, 4, 2053951717718855. [Google Scholar] [CrossRef]
- Zagheni, E.; Weber, I.; Gummadi, K. Leveraging Facebook’s advertising platform to monitor stocks of migrants. Popul. Dev. Rev. 2017, 721–734. [Google Scholar] [CrossRef]
- Ahlers, G.K.; Cumming, D.; Günther, C.; Schweizer, D. Signaling in equity crowdfunding. Entrep. Theory Pract. 2015, 39, 955–980. [Google Scholar] [CrossRef]
- Mollick, E. The dynamics of crowdfunding: An exploratory study. J. Bus. Ventur. 2014, 29, 1–16. [Google Scholar] [CrossRef]
- Zheng, H.; Li, D.; Wu, J.; Xu, Y. The role of multidimensional social capital in crowdfunding: A comparative study in China and US. Inf. Manag. 2014, 51, 488–496. [Google Scholar] [CrossRef]
- Davis, B.C.; Hmieleski, K.M.; Webb, J.W.; Coombs, J.E. Funders’ positive affective reactions to entrepreneurs’ crowdfunding pitches: The influence of perceived product creativity and entrepreneurial passion. J. Bus. Ventur. 2017, 32, 90–106. [Google Scholar] [CrossRef]
- Hoegen, A.; Steininger, D.M.; Veit, D. How do investors decide? An interdisciplinary review of decision-making in crowdfunding. Electron. Mark. 2018, 28, 339–365. [Google Scholar] [CrossRef]
- Bueno, E.V.; Weber, T.B.B.; Bomfim, E.L.; Kato, H.T. Measuring customer experience in service: A systematic review. Serv. Ind. J. 2019, 39, 779–798. [Google Scholar] [CrossRef]
- Connelly, B.L.; Certo, S.T.; Ireland, R.D.; Reutzel, C.R. Signaling theory: A review and assessment. J. Manag. 2011, 37, 39–67. [Google Scholar] [CrossRef]
- Spence, M. Competitive and optimal responses to signals: An analysis of efficiency and distribution. J. Econ. Theory 1974, 7, 296–332. [Google Scholar] [CrossRef]
- Cason, T.N.; Tabarrok, A.; Zubrickas, R. Signaling quality: How refund bonuses can overcome information asymmetries in crowdfunding. Manag. Sci. 2025, 71, 5933–5947. [Google Scholar] [CrossRef]
- Moradi, M.; Dass, M.; Arnett, D.; Badrinarayanan, V. The time-varying effects of rhetorical signals in crowdfunding campaigns. J. Acad. Mark. Sci. 2024, 52, 370–398. [Google Scholar] [CrossRef]
- Tadelis, S. Reputation and feedback systems in online platform markets. Annu. Rev. Econ. 2016, 8, 321–340. [Google Scholar] [CrossRef]
- Seiler, D.; O’Donnell, G.E. Filling the gap: Comparison of proxy measurement techniques for small data scenarios. J. Clean. Prod. 2020, 275, 123795. [Google Scholar] [CrossRef]
- Steigenberger, N.; Garz, M.; Cyron, T. Signaling theory in entrepreneurial fundraising and crowdfunding research. J. Small Bus. Manag. 2025, 63, 1830–1855. [Google Scholar] [CrossRef]
- Blohm, I.; Schulz, M.; Leimeister, J.M. Hedonic Signals in Crowdfunding: A Comparison Across Crowdfunding Platform Types. Bus. Inf. Syst. Eng. 2024, 66, 757–775. [Google Scholar] [CrossRef]
- Kleinert, S.; Bafera, J.; Urbig, D.; Volkmann, C.K. Access denied: How equity crowdfunding platforms use quality signals to select new ventures. Entrep. Theory Pract. 2022, 46, 1626–1657. [Google Scholar] [CrossRef]
- Becker, G.S. Human Capital; National Bureau of Economic Research: New York, NY, USA, 1964. [Google Scholar]
- Lange, D.; Lee, P.M.; Dai, Y. Organizational reputation: A review. J. Manag. 2011, 37, 153–184. [Google Scholar] [CrossRef]
- Wang, N.; Liang, H.; Xue, Y.; Ge, S. Mitigating information asymmetry to achieve crowdfunding success: Signaling and online communication. J. Assoc. Inf. Syst. 2021, 22, 4. [Google Scholar] [CrossRef]
- Simonton, D.K. Creative productivity: A predictive and explanatory model of career trajectories and landmarks. Psychol. Rev. 1977, 104, 66–85. [Google Scholar] [CrossRef]
- Leonard-Barton, D. Core capabilities and core rigidities: A paradox in managing new product development. Strateg. Manag. J. 1992, 13, 111–125. [Google Scholar] [CrossRef]
- Simon, H. A behavioral model of rational choice. Models Man Soc. Ration. Math. Essays Ration. Hum. Behav. A Soc. Setting 1957, 6, 241–260. [Google Scholar] [CrossRef]
- Sweller, J. Cognitive load during problem solving: Effects on learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
- Kahneman, D. Fast and Slow Thinking; Allen Lane and Penguin Books: New York, NY, USA, 2011. [Google Scholar]
- Dimoka, A.; Hong, Y.; Pavlou, P.A. On product uncertainty in online markets: Theory and evidence. MIS Q. 2012, 395–426. [Google Scholar] [CrossRef]
- Sims, C.A. Implications of rational inattention. J. Monet. Econ. 2003, 50, 665–690. [Google Scholar] [CrossRef]
- Argote, L. Organizational Learning: Creating, Retaining and Transferring Knowledge; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Block, J.; Hornuf, L.; Moritz, A. Which updates during an equity crowdfunding campaign increase crowd participation? Small Bus. Econ. 2018, 50, 3–27. [Google Scholar] [CrossRef]
- Dane, E. Reconsidering the trade-off between expertise and flexibility: A cognitive entrenchment perspective. Acad. Manag. Rev. 2010, 35, 579–603. [Google Scholar]
- Pennebaker, J.W.; Boyd, R.L.; Jordan, K.; Blackburn, K. The Development and Psychometric Properties of LIWC2015; University of Texas at Austin: Austin, TX, USA, 2015. [Google Scholar]
- Parhankangas, A.; Renko, M. Linguistic style and crowdfunding success among social and commercial entrepreneurs. J. Bus. Ventur. 2017, 32, 215–236. [Google Scholar] [CrossRef]
- Anglin, A.H.; Short, J.C.; Drover, W.; Stevenson, R.M.; McKenny, A.F.; Allison, T.H. The power of positivity? The influence of positive psychological capital language on crowdfunding performance. J. Bus. Ventur. 2018, 33, 470–492. [Google Scholar] [CrossRef]
- Hambrick, D.C. The field of management’s devotion to theory: Too much of a good thing? Acad. Manag. J. 2007, 50, 1346–1352. [Google Scholar] [CrossRef]
- Haans, R.F.; Pieters, C.; He, Z.L. Thinking about U: Theorizing and testing U-and inverted U-shaped relationships in strategy research. Strateg. Manag. J. 2016, 37, 1177–1195. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Denrell, J. Vicarious learning, undersampling of failure, and the myths of management. Organ. Sci. 2003, 14, 227–243. [Google Scholar] [CrossRef]
- Imai, K.; Keele, L.; Tingley, D. A general approach to causal mediation analysis. Psychol. Methods 2010, 15, 309. [Google Scholar] [CrossRef]
- Agrawal, A.; Catalini, C.; Goldfarb, A. Some simple economics of crowdfunding. Innov. Policy Econ. 2014, 14, 63–97. [Google Scholar] [CrossRef]
- Mollick, E.; Nanda, R. Wisdom or madness? Comparing crowds with expert evaluation in funding the arts. Manag. Sci. 2016, 62, 1533–1553. [Google Scholar] [CrossRef]
- Belleflamme, P.; Lambert, T.; Schwienbacher, A. Crowdfunding: Tapping the right crowd. J. Bus. Ventur. 2014, 29, 585–609. [Google Scholar] [CrossRef]
- Cumming, D.J.; Leboeuf, G.; Schwienbacher, A. Crowdfunding models: Keep-it-all vs. all-or-nothing. Financ. Manag. 2020, 49, 331–360. [Google Scholar] [CrossRef]
- Courtney, C.; Dutta, S.; Li, Y. Resolving information asymmetry: Signaling, endorsement, and crowdfunding success. Entrep. Theory Pract. 2017, 41, 265–290. [Google Scholar] [CrossRef]
- Kromidha, E.; Robson, P. Social identity and signalling success factors in online crowdfunding. Entrep. Reg. Dev. 2016, 28, 605–629. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Angrist, J.D.; Pischke, J.S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Hair, J.F. Multivariate Data Analysis; Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Herd, K.B.; Mallapragada, G.; Narayan, V. Do backer affiliations help or hurt crowdfunding success? J. Mark. 2022, 86, 117–134. [Google Scholar] [CrossRef]
- Rerup, C. Learning from past experience: Footnotes on mindfulness and habitual entrepreneurship. Scand. J. Manag. 2005, 21, 451–472. [Google Scholar] [CrossRef]
- Radoynovska, N.; King, B.G. To whom are you true? Audience perceptions of authenticity in nascent crowdfunding ventures. Organ. Sci. 2019, 30, 781–802. [Google Scholar] [CrossRef]
- Lahiri, A.; Wadhwa, A. When do serial entrepreneurs found innovative ventures? Evidence from patent data. Small Bus. Econ. 2021, 57, 1973–1993. [Google Scholar] [CrossRef]
- Kellogg, K.C.; Valentine, M.A.; Christin, A. Algorithms at work: The new contested terrain of control. Acad. Manag. Ann. 2020, 14, 366–410. [Google Scholar] [CrossRef]
- Tiwana, A. Platform Ecosystems: Aligning Architecture, Governance, and Strategy; Newnes: Amsterdam, The Netherlands, 2013. [Google Scholar]


| (A) Continuous and Binary Variables | ||||||
|---|---|---|---|---|---|---|
| Variable | Mean | SD | Median | Min | Max | Notes |
| Pledged Amount (USD) | 107,338.2 | 1,046,962 | 4128.5 | 0 | $6.48 × 107 | Final pledged amount |
| Goal (USD) | 114,672.4 | 1,858,304 | 15,000 | 1 | 1.00 × 108 | Funding goal |
| Backer Count | 356.3 | 1509.8 | 36 | 0 | 105,857 | Number of unique backers |
| Duration (Days) | 36.16 | 12.60 | 30 | 1 | 90 | Campaign duration |
| Creator-Launched Projects | 2.14 | 3.96 | 1 | 1 | 89 | Raw measure for activity proxy |
| Update Count | 10.62 | 12.83 | 5 | 1 | 314 | Number of project updates |
| Creator Backing Projects | 4.96 | 22.25 | 0 | 0 | 1633 | Proxy for network engagement |
| FAQ Count | 2.89 | 5.98 | 0 | 0 | 121 | Number of FAQs |
| Story Images Count | 16.53 | 19.58 | 9 | 0 | 181 | Number of images in story |
| Story Videos Count | 0.64 | 1.54 | 0 | 0 | 27 | Number of videos in story |
| Shown Comments Count | 149.85 | 639.16 | 4 | 0 | 20,329 | Proxy for engagement volume |
| Mean Update Analytic | 30.23 | 25.75 | 31.12 | 0 | 99 | Avg. analytical score |
| Mean Update Authentic | 13.14 | 13.65 | 10.53 | 0 | 98.83 | Avg. authentic score |
| Mean Update Clout | 35.49 | 29.97 | 34.81 | 0 | 99 | Avg. clout score |
| Staff Pick (1 = Yes) | 0.15 | 0.36 | 0 | 0 | 1 | Binary indicator |
| Facebook Connected (1 = Yes) | 0.33 | 0.47 | 0 | 0 | 1 | Binary indicator |
| (B) Category Group Frequencies (N = 17,109) | ||||||
| Category Group | Frequency | Percentage | ||||
| Product Hardware/Tech | 9409 | 55.0% | ||||
| Maker Tech and Tools | 3085 | 18.0% | ||||
| Software and Web Services | 4615 | 27.0% | ||||
| Other/Creative Tech | 0 | 0.0% | ||||
| Total | 17,109 | 100.0% | ||||
| Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1. Outcome Success | 1.00 | |||||||||
| 2. Log Pledged | 0.68 * | 1.00 | ||||||||
| 3. Log Backers Count | 0.72 * | 0.89 * | 1.00 | |||||||
| 4. Log Goal | −0.22 * | 0.21 * | 0.10 * | 1.00 | ||||||
| 5. Log Experience (Proxy) | 0.24 * | 0.13 * | 0.18 * | −0.24 * | 1.00 | |||||
| 6. Log Update Count | 0.74 * | 0.72 * | 0.80 * | 0.03 * | 0.24 * | 1.00 | ||||
| 7. Log Shown Comments | 0.71 * | 0.79 * | 0.89 * | 0.10 * | 0.18 * | 0.80 * | 1.00 | |||
| 8. Mean Update Analytic | 0.58 * | 0.61 * | 0.63 * | −0.02 * | 0.21 * | 0.76 * | 0.58 * | 1.00 | ||
| 9. Mean Update Authentic | 0.49 * | 0.45 * | 0.48 * | −0.10 * | 0.20 * | 0.61 * | 0.44 * | 0.76 * | 1.00 | |
| 10. Mean Update Clout | 0.61 * | 0.63 * | 0.65 * | −0.04 * | 0.21 * | 0.73 * | 0.60 * | 0.91 * | 0.74 * | 1.00 |
| Predictor Variable/Model | Log Pledged (H1/H3 Base) | Log Pledged (H2 Base) | Log Pledged (H3a Base) | Log Backers (H1/H3 Base) | Log Backers (H2 Base) | Log Backers (H3a Base) |
|---|---|---|---|---|---|---|
| H1: Upd Analytic (C) | 0.015 *** (0.001) | 0.015 *** (0.001) | 0.015 *** (0.001) | 0.002 *** (0.000) | 0.002 *** (0.000) | 0.003 *** (0.001) |
| H2/H3: Activity Proxy (C) | 0.051 (0.035) | 0.033 (0.054) | 0.077 (0.054) | 0.024 (0.056) | 0.139 *** (0.032) | 0.103 *** (0.033) |
| H2: Activity Proxy (C)2 | −0.051 (0.031) | −0.018 (0.033) | −0.122 *** (0.018) | −0.065 *** (0.020) | ||
| H3: Exp(C) × UpdAn(C) | −0.008 *** (0.001) | −0.006 ** (0.002) | −0.003 *** (0.001) | 0.005 *** (0.001) | ||
| H3a: Exp(C)2 × UpdAn(C) | −0.001 (0.001) | −0.005 *** (0.001) | ||||
| Log Goal | Yes | Yes | Yes | Yes | Yes | Yes |
| Duration | Yes | Yes | Yes | Yes | Yes | Yes |
| Creator Backing | Yes | Yes | Yes | Yes | Yes | Yes |
| FB Connect | Yes | Yes | Yes | Yes | Yes | Yes |
| Log Images | Yes | Yes | Yes | Yes | Yes | Yes |
| Log Videos | Yes | Yes | Yes | Yes | Yes | Yes |
| Log FAQ | Yes | Yes | Yes | Yes | Yes | Yes |
| Staff Pick | Yes | Yes | Yes | Yes | Yes | Yes |
| Log Update Count | Yes | Yes | Yes | Yes | Yes | Yes |
| Subcategory FE | Yes | Yes | Yes | Yes | Yes | Yes |
| R2 | 0.704 | 0.703 | 0.704 | 0.749 | 0.750 | 0.751 |
| Adj. R2 | 0.703 | 0.703 | 0.703 | 0.749 | 0.749 | 0.750 |
| N | 16,407 | 16,407 | 16,407 | 16,407 | 16,407 | 16,407 |
| Effect Type | Path | Estimate | Std. Err (Boot) | z-Value | p-Value | Std. Est. (All) |
|---|---|---|---|---|---|---|
| Activity Proxy (C) -> Log Pledged | c’ path (ADA) | −0.053 | 0.024 | −2.202 | 0.028 * | −0.008 |
| Log Comments (C) -> Log Pledged | b path | 0.546 | 0.010 | 53.697 | <0.001 *** | 0.386 |
| Activity Proxy (C) -> Log Comments (C) | a path | 0.107 | 0.025 | 4.277 | <0.001 *** | 0.023 |
| Indirect (ab) | indirect := ab (AMA) | 0.059 | 0.014 | 4.276 | <0.001 *** | 0.009 |
| Total (c’ + ab) | total := c’ + (ab) | 0.005 | 0.028 | 0.191 | 0.849 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, O.; Lee, J. The Experience Paradox: Problematizing a Common Digital Trace Proxy on Crowdfunding Platforms. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 270. https://doi.org/10.3390/jtaer20040270
Kim O, Lee J. The Experience Paradox: Problematizing a Common Digital Trace Proxy on Crowdfunding Platforms. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(4):270. https://doi.org/10.3390/jtaer20040270
Chicago/Turabian StyleKim, Ohsung, and Jungwon Lee. 2025. "The Experience Paradox: Problematizing a Common Digital Trace Proxy on Crowdfunding Platforms" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 4: 270. https://doi.org/10.3390/jtaer20040270
APA StyleKim, O., & Lee, J. (2025). The Experience Paradox: Problematizing a Common Digital Trace Proxy on Crowdfunding Platforms. Journal of Theoretical and Applied Electronic Commerce Research, 20(4), 270. https://doi.org/10.3390/jtaer20040270
