From Visibility to Trust: The Impact of Agricultural Product Packaging Images in Livestreaming on Consumer Perception and Repurchase Intention
Abstract
1. Introduction
- (1)
- In livestreaming scenarios, how does the packaging image of agricultural products affect consumers’ repurchase intentions?
- (2)
- What mediating roles does the consumers’ perceived functional and emotional value play between packaging image and repurchase intention?
- (3)
- Compared with traditional models, can an ANN model more effectively uncover the complex influence patterns through which packaging design elements (e.g., color, material, pattern, function) shape consumers’ repurchase intentions?
2. Theoretical Background and Research Hypotheses
2.1. Agricultural Product Packaging
2.2. Repurchase Intention
2.3. Applications of Artificial Neural Networks in Consumer Behavior Research
2.4. Stimulus–Organism-Response (SOR) Theory
2.5. Research Hypotheses
2.5.1. Packaging Design and Repurchase Intention
2.5.2. Packaging Function and Repurchase Intention
2.5.3. Consumer Perceived Value and Repurchase Intention
3. Research Design
3.1. Construction of the Research Model
3.2. Research Methods and Procedures
3.3. Questionnaire Design and Variable Measurement
3.4. Sample Selection and Data Collection
4. Analysis of Design Influencing Factors Based on SEM Model
4.1. Reliability and Validity Testing
4.2. Confirmatory Factor Analysis
4.3. Hypothesis Testing
4.4. Mediation Analysis
5. Construction of the ANN Model
5.1. Root Mean Square Error Test
5.2. Sensitivity Analysis
6. Discussion and Conclusions
6.1. Discussion of Results
- (1)
- How does packaging design affect repurchase intention? SEM results indicate that visual appearance, cultural expression, and material selection all exert significant positive effects on repurchase intention. In particular, the effective communication via packaging of product culture, quality, and distinctive attributes represents a key pathway influencing consumers’ repurchase intention (both H1 and H2b are supported).
- (2)
- What are the mechanisms of information transmission and perceived value? The results show that packaging indirectly strengthens repurchase intention by elevating consumers’ perceived value of the product, thereby confirming the mediating effects (H3/H4).
- (3)
- How do the influence weights of different packaging elements differ? ANN analysis reveals that visual appearance (normalized importance = 85.149%, Model C) has the most pronounced impact on repurchase intention, far exceeding that of other variables such as emotional value or portability.
6.2. Research Contributions
7. Recommendations and Countermeasures
7.1. Optimize Visual Appearance: Creating Visual Identity for Livestreaming Scenarios
7.2. Refine Symbols: Building a Brand IP Symbol System
7.3. Explore Culture: Integrating Regional Culture with Modern Aesthetics
7.4. Limitations and Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Aremu, E.O.; Yoo, D. Brand Marketing Strategy of Live Streaming in Mobile Era: A Case Study of Tmall Platform. J. East Asia Manag. 2020, 1, 65–87. [Google Scholar] [CrossRef]
- Zhang, Y. The Study on the New Retail’s Emergence and Development in China. Acad. J. Eng. Technol. Sci. 2021, 4, 16–24. [Google Scholar] [CrossRef]
- Almeida Lucas, G.; Lunardi, G.L.; Bittencourt Dolci, D. From E-Commerce to m-Commerce: An Analysis of the User’s Experience with Different Access Platforms. Electron. Commer. Res. Appl. 2023, 58, 101240. [Google Scholar] [CrossRef]
- Sridhar, A.; Balakrishnan, A.; Jacob, M.M.; Sillanpää, M.; Dayanandan, N. Global Impact of COVID-19 on Agriculture: Role of Sustainable Agriculture and Digital Farming. Environ. Sci. Pollut. Res. 2023, 30, 42509–42525. [Google Scholar] [CrossRef]
- Underwood, R.L.; Klein, N.M. Packaging as Brand Communication: Effects of Product Pictures on Consumer Responses to the Package and Brand. J. Mark. Theory Pract. 2002, 10, 58–68. [Google Scholar] [CrossRef]
- Chitturi, R.; Londoño, J.C.; Henriquez, M.C. Visual Design Elements of Product Packaging: Implications for Consumers’ Emotions, Perceptions of Quality, and Price. Color Res. Appl. 2022, 47, 729–744. [Google Scholar] [CrossRef]
- Simmonds, G.; Spence, C. Thinking inside the Box: How Seeing Products on, or through, the Packaging Influences Consumer Perceptions and Purchase Behaviour. Food Qual. Prefer. 2017, 62, 340–351. [Google Scholar] [CrossRef]
- Daugherty, T.; Li, H.; Biocca, F. Consumer Learning and the Effects of Virtual Experience Relative to Indirect and Direct Product Experience. Psychol. Mark. 2008, 25, 568–586. [Google Scholar] [CrossRef]
- Wang, E.S.-T. Different Effects of Utilitarian and Hedonic Benefits of Retail Food Packaging on Perceived Product Quality and Purchase Intention. J. Food Prod. Mark. 2017, 23, 239–250. [Google Scholar] [CrossRef]
- Ray, P.; Zou, L. Live Stream E-Commerce: Factors That Motivate the Evolving Consumer Patterns. Afr. J. Econ. Politics Soc. Stud. 2022, 1, 155–170. [Google Scholar] [CrossRef]
- Shukla, P.; Singh, J.; Wang, W. The Influence of Creative Packaging Design on Customer Motivation to Process and Purchase Decisions. J. Bus. Res. 2022, 147, 338–347. [Google Scholar] [CrossRef]
- Sitopu, J.W.; Firdaus, A. Analyzing the Impact of Packaging Design on Consumer Purchasing Decisions in the Cosmetics Industry. J. Econ. Manag. Bus. Technol. 2024, 3, 1–8. [Google Scholar] [CrossRef]
- Rundh, B. Packaging Design: Creating Competitive Advantage with Product Packaging. Br. Food J. 2009, 111, 988–1002. [Google Scholar] [CrossRef]
- Silayoi, P.; Speece, M. The Importance of Packaging Attributes: A Conjoint Analysis Approach. Eur. J. Mark. 2007, 41, 1495–1517. [Google Scholar] [CrossRef]
- Ampuero, O.; Vila, N. Consumer Perceptions of Product Packaging. J. Consum. Mark. 2006, 23, 100–112. [Google Scholar] [CrossRef]
- Babalis, A.; Ntintakis, I.; Chaidas, D.; Makris, A. Design and Development of Innovative Packaging for Agricultural Products. Procedia Technol. 2013, 8, 575–579. [Google Scholar] [CrossRef]
- Jones, M.A.; Mothersbaugh, D.L.; Beatty, S.E. Switching Barriers and Repurchase Intentions in Services. J. Retail. 2000, 76, 259–274. [Google Scholar] [CrossRef]
- Ebrahim, R.; Ghoneim, A.; Irani, Z.; Fan, Y. A Brand Preference and Repurchase Intention Model: The Role of Consumer Experience. J. Mark. Manag. 2016, 32, 1230–1259. [Google Scholar] [CrossRef]
- Raj, M.P.M.; Roy, S. Impact of Brand Image on Consumer Decision-Making: A Study on High-Technology Products. Glob. Bus. Rev. 2015, 16, 463–477. [Google Scholar] [CrossRef]
- Merrilees, B. Interactive Brand Experience Pathways to Customer-Brand Engagement and Value Co-Creation. J. Prod. Brand Manag. 2016, 25, 402–408. [Google Scholar] [CrossRef]
- Bruhn, M.; Georgi, D. Sales-Related Benefit-Analysis of Service Quality Investments—The Moderating Role of Customer Relationship Type. In Service Quality and Management; Deutscher Universitätsverlag: Wiesbaden, Germany, 1999; pp. 275–300. ISBN 978-3-322-90981-7. [Google Scholar]
- De Mauro, A.; Sestino, A.; Bacconi, A. Machine Learning and Artificial Intelligence Use in Marketing: A General Taxonomy. Ital. J. Mark. 2022, 2022, 439–457. [Google Scholar] [CrossRef]
- Graupe, D. Deep Learning Neural Networks: Design and Case Studies; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2016; ISBN 978-981-314-645-7. [Google Scholar]
- Faritha Banu, J.; Neelakandan, S.; Geetha, B.T.; Selvalakshmi, V.; Umadevi, A.; Martinson, E.O. Artificial Intelligence Based Customer Churn Prediction Model for Business Markets. Comput. Intell. Neurosci. 2022, 2022, 1703696. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Fan, N.-H. A Novel Approach to Market Segmentation Selection Using Artificial Intelligence Techniques. J. Supercomput. 2022, 79, 1235–1262. [Google Scholar] [CrossRef]
- Ahmed, R.R.; Streimikiene, D.; Channar, Z.A.; Soomro, H.A.; Streimikis, J.; Kyriakopoulos, G.L. The Neuromarketing Concept in Artificial Neural Networks: A Case of Forecasting and Simulation from the Advertising Industry. Sustainability 2022, 14, 8546. [Google Scholar] [CrossRef]
- Azad, M.S.; Khan, S.S.; Hossain, R.; Rahman, R.; Momen, S. Predictive Modeling of Consumer Purchase Behavior on Social Media: Integrating Theory of Planned Behavior and Machine Learning for Actionable Insights. PLoS ONE 2023, 18, e0296336. [Google Scholar] [CrossRef] [PubMed]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974; pp. xii, 266. ISBN 978-0-262-13090-5. [Google Scholar]
- Eroglu, S.A.; Machleit, K.A.; Davis, L.M. Empirical Testing of a Model of Online Store Atmospherics and Shopper Responses. Psychol. Mark. 2003, 20, 139–150. [Google Scholar] [CrossRef]
- Sultan, P.; Wong, H.Y.; Azam, M.S. How Perceived Communication Source and Food Value Stimulate Purchase Intention of Organic Food: An Examination of the Stimulus-Organism-Response (SOR) Model. J. Clean. Prod. 2021, 312, 127807. [Google Scholar] [CrossRef]
- Pereira, M.L.; Petroll, M.d.L.M.; Soares, J.C.; Matos, C.A.d.; Hernani-Merino, M. Impulse Buying Behaviour in Omnichannel Retail: An Approach through the Stimulus-Organism-Response Theory. Int. J. Retail Distrib. Manag. 2022, 51, 39–58. [Google Scholar] [CrossRef]
- Rundh, B. The Role of Packaging within Marketing and Value Creation. Br. Food J. 2016, 118, 2491–2511. [Google Scholar] [CrossRef]
- Asmoro, I.P.; Tuti, M. Satisfaction with Packaging and Price to Purchase Decision and Repurchase Intention. J. Din. Manaj. Dan Bisnis 2022, 6, 66–79. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, Y.; Zhang, W.; Lu, K.; Feng, X.; Xia, T. The Influence of the Information Richness of Interfaces on Consumers’ Purchase Intention: The Sequential Mediating Effects of Cognitive Load, Mental Imagery, and Flow Experience. Behav. Sci. 2025, 15, 673. [Google Scholar] [CrossRef]
- Lindh, H.; Williams, H.; Olsson, A.; Wikström, F. Elucidating the Indirect Contributions of Packaging to Sustainable Development: A Terminology of Packaging Functions and Features. Packag. Technol. Sci. 2016, 29, 225–246. [Google Scholar] [CrossRef]
- Kato, T. Functional Value vs Emotional Value: A Comparative Study of the Values That Contribute to a Preference for a Corporate Brand. Int. J. Inf. Manag. Data Insights 2021, 1, 100024. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. An Introduction to Structural Equation Modeling. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Hair, J.F., Jr., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P., Ray, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–29. ISBN 978-3-030-80519-7. [Google Scholar]
- Wu, Y.; Feng, J. Development and Application of Artificial Neural Network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Marinković, V.; Kalinić, Z. A SEM-Neural Network Approach for Predicting Antecedents of m-Commerce Acceptance. Int. J. Inf. Manag. 2017, 37, 14–24. [Google Scholar] [CrossRef]
Variable Category | Core Variable | Measurement Dimension | Theoretical Basis |
---|---|---|---|
Stimulus (S) | Packaging Visual Layer | Design Aesthetics, Recognizability | Multidimensional Brand Image Model |
Packaging Functional Layer | Preservation Performance, Convenience of Use | Technology Acceptance Model (TAM) | |
Organism (O) | Perceived Functional Value | Confidence in Quality and Safety, Information Credibility | Perceived Risk Theory |
Perceived Emotional Value | Sense of Pleasure, Identification, Belonging | Emotional Value in SOR Framework | |
Response (R) | Repurchase Intention | Repeat Purchase Tendency in Livestreaming, Willingness to Recommend | Repurchase Intention Scale |
First-Level Dimension | Second-Level Dimension | Questionnaire Items |
---|---|---|
Packaging design | Appearance (AP) | Livestreaming presentation effect |
Livestreaming unboxing experience | ||
Material texture expressiveness | ||
Visual elements (VE) | Color coordination | |
Reasonable text and image layout | ||
Illustration style innovation | ||
Packaging function | Portability and protection (PP) | Portability |
Protection | ||
Freshness preservation | ||
Conveying information (CI) | Conveying product culture | |
Conveying product quality | ||
Conveying product features | ||
Consumer perceived value | Perceived functional value (PFV) | Trustworthiness of preservation performance |
Reliability of traceability information | ||
Consistency between live broadcast and actual product | ||
Perceived emotional value (PEV) | Aesthetic pleasure | |
Environmental awareness | ||
Sense of community belonging | ||
Repurchase intention (RI) | Livestreaming repurchase intention | |
Livestreaming recommendation intention |
Construct | Item | Cronbach’s α |
---|---|---|
AP | Livestreaming presentation effect | 0.896 |
Livestreaming unboxing experience | ||
Material texture expressiveness | ||
VE | Color coordination | 0.866 |
Reasonable text and image layout | ||
Illustration style innovation | ||
PP | Portability | 0.882 |
Protection | ||
Freshness preservation | ||
CI | Conveying product culture | 0.924 |
Conveying product quality | ||
Conveying product features | ||
PFV | Trustworthiness of preservation performance | 0.856 |
Reliability of traceability information | ||
Consistency between live broadcast and actual product | ||
PEV | Aesthetic pleasure | 0.907 |
Environmental awareness | ||
Sense of community belonging | ||
RI | Livestreaming repurchase intention | 0.939 |
Livestreaming recommendation intention |
KMO | 0.849 | |
---|---|---|
Bartlett’s sphericity | spherical test | 5670.722 |
df-value | 190 | |
p-value | 0.000 |
Fitting Index | Acceptable Range | Measured Value |
---|---|---|
CMIN | 358.901 | |
DF | 150 | |
CMIN/DF | 1–3 | 2.393 |
GFI | ≥0.8 | 0.916 |
AGFI | ≥0.8 | 0.883 |
RMSEA | <0.08 | 0.060 |
IFI | ≥0.9 | 0.963 |
NFI | ≥0.8 | 0.938 |
TLI (NNFI) | ≥0.9 | 0.953 |
CFI | ≥0.9 | 0.963 |
Hypothesis | Estimate | S.E. | C.R. | p | Testing the Hypothesis | |||
---|---|---|---|---|---|---|---|---|
H1a | RI | <--- | AP | 0.210 | 0.055 | 3.792 | *** | Established |
H1b | RI | <--- | VE | 0.159 | 0.058 | 2.732 | 0.006 | Established |
H2a | RI | <--- | PP | 0.150 | 0.057 | 2.623 | 0.009 | Established |
H2b | RI | <--- | CI | 0.169 | 0.048 | 3.523 | *** | Established |
H3 | RI | <--- | PFV | 0.197 | 0.074 | 2.646 | 0.008 | Established |
H4 | RI | <--- | PEV | 0.171 | 0.052 | 3.316 | *** | Established |
H3a | PFV | <--- | AP | 0.239 | 0.046 | 5.250 | *** | Established |
H3b | PFV | <--- | VE | 0.141 | 0.049 | 2.868 | 0.004 | Established |
H3c | PEV | <--- | PP | 0.171 | 0.064 | 2.670 | 0.008 | Established |
H3d | PEV | <--- | CI | 0.318 | 0.052 | 6.165 | *** | Established |
H4a | PEV | <--- | AP | 0.166 | 0.059 | 2.815 | 0.005 | Established |
H4b | PEV | <--- | VE | 0.193 | 0.065 | 2.964 | 0.003 | Established |
H4c | PFV | <--- | PP | 0.136 | 0.048 | 2.824 | 0.005 | Established |
H4d | PFV | <--- | CI | 0.111 | 0.039 | 2.886 | 0.004 | Established |
Mediation Path | Effect | Estimate | Lower | Upper | p |
---|---|---|---|---|---|
AP—PFV—RI | Indirect Effect | 0.047 | 0.004 | 0.103 | 0.026 |
Direct Effect | 0.210 | 0.082 | 0.329 | 0.001 | |
Total Effect | 0.257 | 0.144 | 0.372 | 0.001 | |
VE—PFV—RI | Indirect Effect | 0.028 | 0.002 | 0.068 | 0.028 |
Direct Effect | 0.210 | 0.082 | 0.329 | 0.001 | |
Total Effect | 0.238 | 0.112 | 0.361 | 0.001 | |
PP—PFV—RI | Indirect Effect | 0.028 | 0.000 | 0.066 | 0.047 |
Direct Effect | 0.159 | 0.008 | 0.306 | 0.037 | |
Total Effect | 0.186 | 0.035 | 0.334 | 0.017 | |
CI—PFV—RI | Indirect Effect | 0.033 | 0.003 | 0.077 | 0.022 |
Direct Effect | 0.159 | 0.008 | 0.306 | 0.037 | |
Total Effect | 0.192 | 0.044 | 0.347 | 0.010 | |
AP—PEV—RI | Indirect Effect | 0.027 | 0.001 | 0.065 | 0.045 |
Direct Effect | 0.150 | 0.006 | 0.302 | 0.041 | |
Total Effect | 0.176 | 0.034 | 0.324 | 0.014 | |
VE—PEV—RI | Indirect Effect | 0.029 | 0.001 | 0.066 | 0.040 |
Direct Effect | 0.150 | 0.006 | 0.302 | 0.041 | |
Total Effect | 0.179 | 0.036 | 0.333 | 0.019 | |
PP—PEV—RI | Indirect Effect | 0.022 | 0.001 | 0.054 | 0.034 |
Direct Effect | 0.169 | 0.056 | 0.283 | 0.006 | |
Total Effect | 0.171 | 0.027 | 0.323 | 0.019 | |
CI—PEV—RI | Indirect Effect | 0.054 | 0.013 | 0.110 | 0.009 |
Direct Effect | 0.150 | 0.006 | 0.302 | 0.041 | |
Total Effect | 0.224 | 0.128 | 0.326 | 0.001 |
Model A | Model B | Model C | ||||
---|---|---|---|---|---|---|
Input: AP, VE, PP, CI | Input: AP, VE, PP, CI | Input: AP, VE, PP, CI, PFV, PEV | ||||
Output: PFV | Output: PEV | Output: RI | ||||
Neural network | Training | Testing | Training | Testing | Training | Testing |
ANN1 | 0.3910 | 0.3809 | 0.3518 | 0.3620 | 0.2658 | 0.2380 |
ANN2 | 0.3871 | 0.4363 | 0.3150 | 0.2826 | 0.2594 | 0.2655 |
ANN3 | 0.3505 | 0.4551 | 0.3237 | 0.2682 | 0.2965 | 0.2572 |
ANN4 | 0.3561 | 0.2819 | 0.3494 | 0.3182 | 0.3043 | 0.2005 |
ANN5 | 0.3544 | 0.3374 | 0.2976 | 0.1915 | 0.2891 | 0.3150 |
ANN6 | 0.4708 | 0.2019 | 0.3225 | 0.2877 | 0.3622 | 0.2888 |
ANN7 | 0.3457 | 0.3140 | 0.3366 | 0.2953 | 0.2586 | 0.3285 |
ANN8 | 0.3969 | 0.3954 | 0.3244 | 0.3753 | 0.2878 | 0.2029 |
ANN9 | 0.3539 | 0.3065 | 0.3581 | 0.2321 | 0.3001 | 0.1484 |
ANN10 | 0.3721 | 0.3289 | 0.2738 | 0.2521 | 0.3331 | 0.3731 |
Mean | 0.3779 | 0.3438 | 0.3253 | 0.2865 | 0.2957 | 0.2618 |
SD | 0.1887 | 0.2679 | 0.1567 | 0.2304 | 0.1761 | 0.2532 |
Neural Network | ANN1 | ANN2 | ANN3 | ANN4 | ANN5 | ANN6 | ANN7 | ANN8 | ANN9 | ANN10 | Average Relative Importance | Normalized Relative Importance (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model A (Output: PFV) | AP | 0.477 | 0.270 | 0.354 | 0.354 | 0.329 | 0.313 | 0.370 | 0.451 | 0.350 | 0.379 | 0.365 | 100.000 |
VE | 0.262 | 0.231 | 0.220 | 0.206 | 0.221 | 0.241 | 0.252 | 0.137 | 0.275 | 0.208 | 0.225 | 61.644 | |
PP | 0.101 | 0.195 | 0.225 | 0.271 | 0.290 | 0.223 | 0.218 | 0.054 | 0.209 | 0.215 | 0.200 | 54.800 | |
CI | 0.160 | 0.305 | 0.201 | 0.169 | 0.160 | 0.222 | 0.159 | 0.358 | 0.166 | 0.198 | 0.210 | 57.530 | |
Model B (Output: PEV) | AP | 0.225 | 0.193 | 0.156 | 0.015 | 0.201 | 0.203 | 0.258 | 0.227 | 0.058 | 0.187 | 0.172 | 55.128 |
VE | 0.416 | 0.205 | 0.275 | 0.235 | 0.184 | 0.306 | 0.389 | 0.295 | 0.335 | 0.217 | 0.286 | 91.667 | |
PP | 0.303 | 0.304 | 0.313 | 0.466 | 0.381 | 0.225 | 0.270 | 0.242 | 0.255 | 0.357 | 0.312 | 100.000 | |
CI | 0.057 | 0.298 | 0.256 | 0.284 | 0.233 | 0.266 | 0.083 | 0.235 | 0.352 | 0.239 | 0.230 | 73.718 | |
Model C (Output: RI) | AP | 0.200 | 0.183 | 0.190 | 0.207 | 0.148 | 0.171 | 0.137 | 0.193 | 0.197 | 0.094 | 0.172 | 85.149 |
VE | 0.147 | 0.180 | 0.217 | 0.173 | 0.231 | 0.027 | 0.212 | 0.202 | 0.194 | 0.268 | 0.185 | 91.584 | |
PP | 0.108 | 0.183 | 0.208 | 0.150 | 0.170 | 0.402 | 0.135 | 0.051 | 0.099 | 0.232 | 0.174 | 86.139 | |
CI | 0.183 | 0.143 | 0.045 | 0.175 | 0.146 | 0.245 | 0.195 | 0.189 | 0.219 | 0.075 | 0.162 | 80.198 | |
PFV | 0.112 | 0.050 | 0.143 | 0.081 | 0.130 | 0.102 | 0.110 | 0.145 | 0.089 | 0.096 | 0.106 | 52.475 | |
PEV | 0.250 | 0.260 | 0.197 | 0.215 | 0.175 | 0.053 | 0.212 | 0.219 | 0.202 | 0.235 | 0.202 | 100.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Liang, J.; Liu, J.; Shen, M.; Liu, X. From Visibility to Trust: The Impact of Agricultural Product Packaging Images in Livestreaming on Consumer Perception and Repurchase Intention. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 248. https://doi.org/10.3390/jtaer20030248
Tang H, Liang J, Liu J, Shen M, Liu X. From Visibility to Trust: The Impact of Agricultural Product Packaging Images in Livestreaming on Consumer Perception and Repurchase Intention. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):248. https://doi.org/10.3390/jtaer20030248
Chicago/Turabian StyleTang, Huanchen, Jingwen Liang, Jinjin Liu, Miqi Shen, and Xiaodong Liu. 2025. "From Visibility to Trust: The Impact of Agricultural Product Packaging Images in Livestreaming on Consumer Perception and Repurchase Intention" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 248. https://doi.org/10.3390/jtaer20030248
APA StyleTang, H., Liang, J., Liu, J., Shen, M., & Liu, X. (2025). From Visibility to Trust: The Impact of Agricultural Product Packaging Images in Livestreaming on Consumer Perception and Repurchase Intention. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 248. https://doi.org/10.3390/jtaer20030248