AI-Enabled Mobile Food-Ordering Apps and Customer Experience: A Systematic Review and Future Research Agenda
Abstract
1. Introduction
2. Theoretical Background
3. Review Methodology
3.1. Identification
3.2. Duplicate Removal Procedure
3.3. Screening I—Accessibility Check
3.4. Screening II—Title and Abstract Check
3.5. Eligibility Assessment
3.6. Data Extraction and Thematic Synthesis
3.7. Citation Snowballing
3.8. Risk-of-Bias Assessment
4. Literature Review
4.1. Publication Trends
4.2. Methodological Choices and Data Sources
4.3. Theoretical Anchors and Key Findings
4.4. Thematic Review of Customer Experience with AI-Enabled Mobile Food-Ordering Apps
4.4.1. Instrumental Usability
4.4.2. Algorithmic-Personalization Value
4.4.3. Affective Engagement
4.4.4. Data Trust and Procedural Fairness
4.4.5. Social Co-Experience
5. Discussion
5.1. Key Findings
5.1.1. KF-1 Algorithmic-Personalization Value
5.1.2. KF-2 Affective Engagement
5.1.3. KF-3 Data Trust Procedural Fairness
5.1.4. KF-4 Social Co-Experience
5.2. Theoretical Implications and Conceptual Mapping
5.2.1. Integration with the USUS Framework
5.2.2. Extending Theory Beyond Adoption Logic
5.2.3. Mechanisms Illuminated by the Map
5.2.4. Coupling Privacy and Procedural Justice
5.2.5. Social Co-Experience as a Moderating Force
5.2.6. Methodological Agenda
5.3. Practical Implications
5.3.1. Prioritize Reliability over Novelty in Personalization
5.3.2. Calibrate Emotion with Real-Time Feedback
5.3.3. Make Data Trust and Fairness Visible
5.3.4. Design Collaborative Tools for Equity, Not Just Convenience
5.3.5. Harness, Yet Temper, Cross-Platform Influence
6. Limitations and Directions for Future Research
6.1. Narrow Data Sources and the “Silent-Churner” Problem
6.2. Geographical Imbalance
6.3. Short Observational Horizons
6.4. Scarcity of Field Experiments
6.5. Measurement Voids for Emerging Constructs
6.6. Under-Developed Interdisciplinary Links
6.7. Roadmap
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
APC | Article Processing Charge |
CX | Customer Experience |
MFOA | Mobile Food-Ordering App |
MDPI | Multidisciplinary Digital Publishing Institute |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
S-O-R | Stimulus–Organism–Response |
SEM | Structural Equation Modeling |
TAM | Technology Acceptance Model |
UTAUT | Unified Theory of Acceptance and Use of Technology |
References
- Pangarkar, T. Online Food Delivery Statistics and Facts (2025). Market.us Scoop. 2025. Available online: https://scoop.market.us/online-food-delivery-statistics/ (accessed on 17 April 2025).
- Hollebeek, L.; Sarstedt, M.; Menidjel, C.; Urbonavicius, S.; Dikcius, V. Theoretical rigor of customer experience scales: A systematic review and a roadmap for researchers. Mark. Intell. Plan. 2024, 42, 1464–1493. [Google Scholar] [CrossRef]
- Harjani, J.L.; Batra, I. Antecedents of artificial intelligence in the food service industry: A meta-analytic review. J. Foodserv. Bus. Res. 2025, 1–26. [Google Scholar] [CrossRef]
- Kacprzak, A.; Hensel, P. Exploring Online Customer Experience: A Systematic Literature Review and Research Agenda. Int. J. Consum. Stud. 2023, 47, 2583–2608. [Google Scholar] [CrossRef]
- Peng, B.; Erkoc, M.; Omachonu, V.K. Online food ordering and delivery: A study on the use of customer service data and quality function deployment. J. Food Distrib. Res. 2024, 55, 65–95. [Google Scholar]
- Cloarec, J. The personalization–privacy paradox in the attention economy. Technol. Forecast. Soc. Change 2020, 161, 120299. [Google Scholar] [CrossRef]
- Zuboff, S. Big other: Surveillance capitalism and the prospects of an information civilization. J. Inf. Technol. 2015, 30, 75–89. [Google Scholar] [CrossRef]
- Pasquale, F. The Black Box Society: The Secret Algorithms That Control Money and Information; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Booth, R. Delivery Apps Urged to Lift Lid on ‘Black-Box Algorithms’ Affecting UK Couriers. The Guardian. Available online: https://www.theguardian.com/business/2025/jan/20/food-delivery-apps-ubereats-deliveroo-justeat-urged-to-reveal-how-algorithms-affect-uk-courierss-work (accessed on 20 April 2025).
- Xia, T.; Shen, X.; Li, L. Is AI food a gimmick or the future direction of food production?—Predicting consumers’ willingness to buy AI food based on cognitive trust and affective trust. Foods 2024, 13, 2983. [Google Scholar] [CrossRef]
- Scarpi, D. Work and fun on the Internet: The effects of utilitarianism and hedonism online. J. Interact. Mark. 2012, 26, 53–67. [Google Scholar] [CrossRef]
- Weiss, A.; Bernhaupt, R.; Lankes, M.; Tscheligi, M. The USUS evaluation framework for human-robot interaction. Proc. AISB Symp. New Front. Hum.-Robot Interact. 2009, 2009, 158–165. [Google Scholar]
- Baltrunas, L.; Church, K.; Karatzoglou, A.; Oliver, N. Frappe: Understanding the usage and perception of mobile app recommendations in-the-wild. arXiv 2015, arXiv:1505.03014. [Google Scholar] [CrossRef]
- Lestari, M.A.; Pradana, M. Improving customer satisfaction: An analysis of Indonesia’s Railfood app e-service quality. J. Logist. Inform. Serv. Sci. 2024, 11, 116–125. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, version 6.3 (Updated February 2022); Cochrane: London, UK, 2022; Available online: https://training.cochrane.org/handbook (accessed on 25 March 2025).
- Upadhyay, Y.; Baber, R.; Paul, J.; Baber, P.; Cain, L. Beyond the first bite: Understanding how online experience shapes user loyalty in the mobile food app market. Electron. Commer. Res. 2024, 24, 799–823. [Google Scholar] [CrossRef]
- Majumder, A.S. The influence of UX design on user retention and conversion rates in mobile apps. arXiv 2025, arXiv:2501.13407. [Google Scholar] [CrossRef]
- Murakami, Y.; Mori, J.; Orihara, R. Metrics for evaluating the serendipity of recommendation lists. In New Frontiers in Artificial Intelligence; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Huang, Z.; Benyoucef, M. An empirical study of mobile application usability: A unified hierarchical approach. J. Syst. Inf. Technol. 2023, 25, 123–140. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Mao, Z.; Zhou, J. Mobile food ordering apps, restaurant performance, and customer satisfaction. Cornell Hosp. Q. 2024, 65, 345–367. [Google Scholar] [CrossRef]
- Lu, H.; Chen, J.; Zhang, Y. The impact of mHealth apps’ affordance on consumers’ novel food purchasing decisions. Decis. Support Syst. 2025, 177, 103891. [Google Scholar] [CrossRef]
- Lanini-Maggi, S.; Ruginski, I.T.; Fabrikant, S.I. Improving Pedestrians’ Spatial Learning during Landmark-Based Navigation with Auditory Emotional Cues and Narrative. In GIScience 2021 Short Paper Proceedings; Center for Spatial Studies, University of California Santa Barbara: Santa Barbara, CA, USA, 2021. [Google Scholar] [CrossRef]
- Kammerer, Y.; Gerjets, P. The role of search result position and source trustworthiness in the selection of web search results for learning. Comput. Educ. 2014, 76, 133–141. [Google Scholar] [CrossRef]
- Das, M.; Ramalingam, M.; Goyal, K. Fear-driven surge: Food delivery apps in a changing world. J. Glob. Mark. 2024, 37, 417–439. [Google Scholar] [CrossRef]
- Gupta, M. Case Study: A Group Ordering Feature for Swiggy. Medium. Available online: https://medium.com/design-bootcamp/case-study-a-group-ordering-feature-for-swiggy-2d73b7b01f1f (accessed on 14 April 2025).
- Pangarkar, R.; Bhosale, A.; Kumar, S. Enhancing performance and scalability of a Flutter-based food ordering application through microservices on AWS. In Proceedings of the International Conference on Digital Transformation and Intelligence; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Diep Su, D.; Nguyen, N.N.N.; Nguyen, L.N.T.; Luu, T.T. Modeling consumers’ trust in mobile food delivery apps: Perspectives of technology acceptance model, mobile service quality and personalization-privacy theory. J. Hosp. Mark. Manag. 2022, 31, 1–35. [Google Scholar] [CrossRef]
- Gavilan, D.; Martinez Navarro, G. Exploring user’s experience of push notifications: A grounded theory approach. Qual. Mark. Res. Int. J. 2022, 25, 708–725. [Google Scholar] [CrossRef]
- Giacomini, G.; Scacchi, A.; Ragusa, P.; Prinzivalli, A.; Abdo Elhadidy, H.S.M.; Gianino, M.M. Which variables and determinants influence online food delivery consumption among workers and students? Results from the DELIvery Choice In OUr Society (DELICIOUS) cross-sectional study. Front. Public Health 2024, 11, 1326628. [Google Scholar] [CrossRef]
- Mohamed, H.E.; Mahmoud, S.W. The impact of online food delivery applications (FDAs) on customer satisfaction and repurchasing intentions: Mediating role of positive e-WOM. J. Assoc. Arab. Univ. Tour. Hosp. 2022, 22, 89–110. [Google Scholar]
- Rostami, M.; Muhammad, U.; Forouzandeh, S.; Berahmand, K.; Farrahi, V.; Oussalah, M. An effective explainable food recommendation using deep image clustering and community detection. Intell. Syst. Appl. 2022, 16, 200157. [Google Scholar] [CrossRef]
- Alalwan, A.A. Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. Int. J. Inf. Manag. 2020, 50, 28–44. [Google Scholar] [CrossRef]
- Mitra, A.; Debnath, S. The impact of UX/UI usability constructs on purchase decisions for mobile food ordering applications in India. In Proceedings of Third International Conference on Advanced Computing and Applications (ICACA 2024) (Lecture Notes in Networks and Systems); Giri, D., Das, S., Rodríguez, J.M.C., De, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Islam, M.; Tamanna, A.K.; Islam, S. The Path to Cashless Transaction: A Study of User Intention and Attitudes toward Quick-Response Mobile Payments. Heliyon 2024, 10, e35302. [Google Scholar] [CrossRef] [PubMed]
- Houcheimi, A.; Mezei, J. The Role of Secure Online Payments in Enabling the Development of E-Tailing. J. Organ. Comput. Electron. Commer. 2024, 34, 299–317. [Google Scholar] [CrossRef]
- Aware, Inc. Consumer Trust in Biometrics: Adoption, Privacy, and the Future of Digital Identity. 2024. Available online: https://www.aware.com/press-releases/new-consumer-report-from-aware-reveals-widespread-trust-in-biometrics/ (accessed on 17 April 2025).
- Shahzad, M.; Khan, S.; Akram, U. The role of blockchain-enabled traceability, task–technology fit, and user self-efficacy in mobile food-delivery applications. J. Retail. Consum. Serv. 2023, 73, 103331. [Google Scholar] [CrossRef]
- Lee, D.; Gopal, A.; Park, S.-H. Different but equal? A field experiment on the impact of recommendation systems on mobile and personal computer channels in retail. Inf. Syst. Res. 2020, 31, 892–912. [Google Scholar] [CrossRef]
- Hanaysha, J.R. Impact of social media marketing features on consumer’s purchase decision in the fast food industry: Brand trust as a mediator. Int. J. Inf. Manag. Data Insights 2022, 2, 100102. [Google Scholar] [CrossRef]
- Jenkins, J.L.; Anderson, B.B.; Vance, A.; Kirwan, C.B.; Eargle, D. More Harm Than Good? How Messages That Interrupt Can Make Us Vulnerable. Inf. Syst. Res. 2016, 27, 880–896. [Google Scholar] [CrossRef]
- Vance, A.; Jenkins, J.L.; Anderson, B.B.; Bjornn, D.K.; Kirwan, C.B. Tuning Out Security Warnings: A Longitudinal Examination of Habituation through fMRI, Eye Tracking, and Field Experiments. MIS Q. 2018, 42, 355–380. [Google Scholar] [CrossRef]
- Yuan, Y.; Riche, N.H.; Marquardt, N.; Nicholas, M.J.; Seyed, T.; Romat, H.; Lee, B.; Pahud, M.; Goldstein, J.; Vishkaie, R.; et al. Understanding Multi-Device Usage Patterns: Physical Device Configurations and Fragmented Workflows. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–22. [Google Scholar] [CrossRef]
- Shrivastava, P.; Sisodia, D.; Nagwani, N.K.; Roy, A. An optimized recommendation framework exploiting textual review-based opinion mining for generating pleasantly surprising, novel yet relevant recommendations. Pattern Recognit. Lett. 2022, 159, 91–99. [Google Scholar] [CrossRef]
- Jia, X.; Lim, S.; Wong, M. Using mobile ecological momentary assessment to understand consumption and context around online food-delivery use: Pilot feasibility and acceptability study. JMIR Form. Res. 2023, 7, e49135. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Halpern, Y.; Thain, N.; Wang, X.; Lee, K.; Prost, F.; Chi, E.H.; Chen, J.; Beutel, A. Measuring recommender system effects with simulated users. Presented at the 2nd Workshop on Fairness, Accountability, Transparency, and Ethics in Socio-Technical Systems (FAccT’20) 2020. arXiv 2021, arXiv:2101.04526. [Google Scholar]
- Klimashevskaia, A.; Jannach, D.; Elahi, M.; Trattner, C. A survey on popularity bias in recommender systems. User Model. User-Adapt. Interact. 2024, 34, 1777–1834. [Google Scholar] [CrossRef]
- Ekstrand, M.D.; Kluver, D.; Harper, F.M.; Konstan, J.A. Letting users choose recommender algorithms: An experimental study. In Proceedings of the 9th ACM Conference on Recommender Systems, Vienna, Austria, 16–20 September 2015; ACM: New York, NY, USA; pp. 11–18. [Google Scholar]
- Sun, R.; Akella, A.; Kong, R.; Zhou, M.; Konstan, J.A. Interactive content diversity and user exploration in online movie recommenders: A field experiment. Int. J. Hum.–Comput. Interact. 2024, 40, 7233–7247. [Google Scholar] [CrossRef]
- Li, L.; Ismail, N.A.; Chong, C.W.; Sun, P.; Pervin, M.D.; Hossain, M.S. Customers’ Emotional Impact on Star Rating and Thumbs-Up Behavior towards Food-Delivery Service Apps. J. Infrastruct. Policy Dev. 2024, 8, 5311. [Google Scholar] [CrossRef]
- Kumar, S.; Shah, A. Revisiting food delivery apps during COVID-19 pandemic: Investigating the role of emotions. J. Retail. Consum. Serv. 2021, 62, 102595. [Google Scholar] [CrossRef]
- Aslam, W.; Ham, M.; Mirza, F.; Ting, D.H.; Hussain, A. Revolutionizing food ordering: Predicting the dynamics of chatbot adoption in a tech-driven era. J. Foodserv. Bus. Res. 2025, 1–25. [Google Scholar] [CrossRef]
- Ghali, Z. From an emotional experience of mobile food shopping to continued purchase intention: Moderating role of e-user expertise. Br. Food J. 2025, 127, 288–309. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, R.; Singh, M. Understanding the influence of mobile in-app price promotions in food-delivery apps on customer engagement and advocacy. Indian J. Mark. 2023, 53, 30–46. [Google Scholar] [CrossRef]
- Habib, H.; Nithyanand, R. YouTube Recommendations Reinforce Negative Emotions: Auditing Algorithmic Bias with Emotionally-Agentic Sock Puppets. arXiv 2025. [Google Scholar] [CrossRef]
- Rodríguez-López, A.; García-Moreno, I.; Martín-Romo, L. Mobile food ordering apps adoption: An empirical study based on the transactional theory of stress and coping. Int. J. Mob. Commun. 2024, 24, 194–224. [Google Scholar] [CrossRef]
- Trivedi, S.; Singh, A. Twitter sentiment analysis of app-based online food delivery companies. Glob. Knowl. Mem. Commun. 2021. Advance online publication. [Google Scholar] [CrossRef]
- Timur, B.; Demir, A.; Karaca, N. Consumer behaviour of mobile food-ordering app users during COVID-19: Dining attitudes, e-satisfaction, perceived risk, and continuance intention. J. Hosp. Tour. Technol. 2023, 14, 109–128. [Google Scholar] [CrossRef]
- Rodman, A.M.; Burns, J.A.; Cotter, G.K. Within-person fluctuations in objective smartphone use and emotional processes during adolescence: An intensive longitudinal study. Affect. Sci. 2024, 5, 332–345. [Google Scholar] [CrossRef]
- Woodward, K.; Kanjo, E.; Brown, D.; McGinnity, T.; Inkster, B.; Tsanas, A.; Macintyre, D. Beyond mobile apps: A survey of technologies for mental well-being. IEEE Trans. Affect. Comput. 2020, 13, 1216–1235. [Google Scholar] [CrossRef]
- Ianole-Călin, R.; Francioni, B.; Masili, G.; Druică, E.; Goschin, Z. A cross-cultural analysis of how individualism and collectivism impact collaborative consumption. Resour. Conserv. Recycl. 2020, 157, 104762. [Google Scholar] [CrossRef]
- Sanny, L.; Chans, M.; Andevta, R. Impact of mobile food ordering applications on consumer loyalty in Indonesian local coffee shops: A technological perspective. In Proceedings of the 2024 International Conference on Computing, Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 20–22 December 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar] [CrossRef]
- IAPP. PCPD Publishes 2023 Report, Shares Privacy Concerns About Food Delivery Apps. International Association of Privacy Professionals. Available online: https://iapp.org/news/b/pcpd-publishes-2023-report-and-shares-its-privacy-concerns-with-online-food-ordering (accessed on 1 February 2024).
- Suranovic, S. Surge pricing and price gouging: Public misunderstanding as a market imperfection (IIEP-WP-2015-20). In Institute for International Economic Policy Working Paper Series; Elliott School of International Affairs, The George Washington University: Washington, DC, USA, 2015. [Google Scholar]
- Thompson, E.G.; Wilson, D.R. Dynamic pricing promotion strategies on consumer repeat purchase behavior in the United States. Front. Manag. Sci. 2024, 3, e38959. [Google Scholar] [CrossRef]
- De Croon, R.; Segovia-Lizano, D.; Finglas, P.; Vanden Abeele, V.; Verbert, K. An explanation interface for healthy food recommendations in a real-life workplace deployment: User-centered design study. JMIR mHealth uHealth 2025, 13, e51271. [Google Scholar] [CrossRef]
- Duke University’s Fuqua School of Business. A Better Revenue Sharing System for Food Delivery Services. Duke Fuqua Insights. Available online: https://www.fuqua.duke.edu/duke-fuqua-insights/better-revenue-sharing-system-food-delivery-services (accessed on 11 January 2023).
- Wiastuti, I.P.; Darmawan, R.; Adiyanto, C. The continuance intention of coffee-shop mobile food-ordering applications. Int. J. Bus. Emerg. Mark. 2024, 17, 231–245. [Google Scholar] [CrossRef]
- Labay, B. Checkout Optimization: How Do Trust Seals Affect Security Perception? CXL Institute. Available online: https://cxl.com/research-study/checkout-optimization/ (accessed on 24 April 2025).
- Rita, P.; Oliveira, T.; Farisa, A. The role of information for the customer journey in mobile food-ordering apps. J. Serv. Mark. 2023, 37, 564–578. [Google Scholar] [CrossRef]
- Goodwin, G.E. Uber Eats Is Joining the Ranks of Apps That Want to Be Just Like TikTok. Business Insider. Available online: https://www.businessinsider.com/uber-eats-testing-new-tiktok-like-feature-2024-4 (accessed on 8 April 2024).
- Walsh, M. TikTok Food Trends are Changing What We Eat—And How Brands Sell It. Fast Company. Available online: https://www.fastcompany.com/91251955/tiktok-food-trends-2024-sales-impact (accessed on 28 March 2024).
- Tham, K.Y.; Tay, Y.L.; Smith, L. Young adults’ use of mobile food-delivery apps and the potential impacts on diet during the COVID-19 pandemic: A mixed-methods study. JMIR mHealth uHealth 2023, 11, e38959. [Google Scholar] [CrossRef]
- Mai, S.; Ketron, S.; Yang, J. How individualism–collectivism influences consumer responses to the sharing economy: Consociality and promotional type. Psychol. Mark. 2020, 37, 641–655. [Google Scholar] [CrossRef]
- Julia Nehme, B.; Rosell, J. Interaction and design barriers for older adults in food delivery apps: A usability study. Int. J. Hum.–Comput. Interact. 2024, 41, 5761–5778. [Google Scholar] [CrossRef]
- Meenakshi, V.; Gupta, S.; Jain, V. Food-sharing apps in the hospitality industry: Strategies to mitigate risks and enhance benefits for increased adoption. Int. J. Hosp. Manag. 2025, 118, 104175. [Google Scholar] [CrossRef]
- Ettis, S.; Abidine, A. Consumer behavior in m-commerce: Literature review and research agenda. In Mobile Commerce: Concepts, Methodologies, Tools, and Applications; Khosrow-Pour, A., Ed.; IGI Global: Hershey, PA, USA, 2017; pp. 264–287. [Google Scholar] [CrossRef]
- Molinillo, S.; Aguilar-Illescas, R.; Anaya-Sánchez, R.; Carvajal-Trujillo, E. The customer retail app experience: Implications for customer loyalty. J. Retail. Consum. Serv. 2022, 65, 102842. [Google Scholar] [CrossRef]
- Mistry, M. What Is the Role of AI in Food Delivery Apps? Examples and Case Studies. Kody Technolab. Available online: https://kodytechnolab.com/blog/ai-in-food-delivery-apps/ (accessed on 5 February 2025).
- Mehdi, M.; Trudel, R. Post hoc explanations improve consumer responses to algorithmic decisions. J. Bus. Res. 2025, 186, 114981. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Do consumers’ perceptions of algorithms and trusting beliefs in service providers facilitate their perceived structural assurance? Telemat. Inform. 2025, 82, 102188. [Google Scholar] [CrossRef]
- Kelly, S.; Kaye, S.A.; Oviedo-Trespalacios, O. What factors contribute to the acceptance of artificial intelligence? A systematic review. Telemat. Inform. 2023, 77, 101925. [Google Scholar] [CrossRef]
- Wang, C.; Ahmad, S.F.; Bani Ahmad Ayassrah, A.Y.A.; Awwad, E.M.; Irshad, M.; Ali, Y.A.; Al-Razgan, M.; Khan, Y.; Han, H. An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon 2023, 9, e18349. [Google Scholar] [CrossRef]
- Obiegbu, J.; Larsen, G. Algorithmic Personalization and Brand Loyalty: An Experiential Perspective. Mark. Theory 2024, 25, 199–219. [Google Scholar] [CrossRef]
- Cao, J.; Sun, W.; Shen, Z.-J.; Ettl, M. Fatigue-Aware Bandits for Dependent Click Models. arXiv 2020, arXiv:2008.09733. Available online: https://arxiv.org/abs/2008.09733 (accessed on 25 June 2025). [CrossRef]
- Khenissi, S.; Nasraoui, O. Modeling and Counteracting Exposure Bias in Recommender Systems. arXiv 2020, arXiv:2001.04832. [Google Scholar]
- Liang, K.-H.; Shi, W.; Oh, Y.; Wang, H.-C.; Zhang, J.; Yu, Z. Dialoging Resonance: How Users Perceive, Reciprocate and React to Chatbot’s Self-Disclosure in Conversational Recommendations. arXiv 2021, arXiv:2106.01666. [Google Scholar]
- Chen, J.; Guo, F.; Ren, Z.; Li, M.; Ham, J. Effects of anthropomorphic design cues of chatbots on users’ perception and visual behaviors. Int. J. Hum.–Comput. Interact. 2023, 40, 3636–3654. [Google Scholar] [CrossRef]
- Dwivedi Yu, J.; Wang, Y.-C.; Qin, L.; Canton-Ferrer, C.; Halevy, A.Y. Affective Signals in a Social Media Recommender System. arXiv 2022, arXiv:2206.12374. [Google Scholar]
- Malc, D.; Selinšek, A.; Dlačić, J.; Milfelner, B. Exploring the emotional side of price fairness perceptions and its consequences. Econ. Res.-Ekon. Istraživanja 2020, 34, 1931–1948. [Google Scholar] [CrossRef]
- ISACA. Using the Digital Trust Ecosystem Framework to Achieve Trustworthy AI: Digital Trust Ecosystem Framework (DTEF) for Ethical AI Governance (White Paper). Available online: https://www.isaca.org/resources/white-papers/2024/using-dtef-to-achieve-trustworthy-ai (accessed on 30 April 2024).
- Grashuis, J.; Su, Y.; Liu, P. Consumer preferences for commission rates in the online food delivery industry: A willingness-to-pay approach. Br. Food J. 2024, 126, 2548–2560. [Google Scholar] [CrossRef]
- Zendesk. The Role of Transparency in Mitigating Algorithmic Distrust in Food Delivery Apps. 2024. Available online: https://www.zendesk.com/resources/transparency-in-food-delivery-apps (accessed on 12 April 2025).
- Kahalkar, K.; Vyas, U. AI for personalized nutrition and healthcare management. In Proceedings of the 2024 2nd DMIHER International Conference on Artificial Intelligence in Healthcare, Education and Industry (IDICAIEI), Wardha, India, 29–30 November 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Rahwan, I. Society-in-the-Loop: Programming the algorithmic social contract. Ethics Inf. Technol. 2018, 20, 5–14. [Google Scholar] [CrossRef]
- Majumdar, T. The impact of cognitive biases on consumer decision-making in online shopping: Analyzing the role of social proof and scarcity messaging. Int. J. Multidiscip. Res. 2025, 7, 1–8. [Google Scholar]
- Sari, I.P.; Atmaja, F.T. Impact of social comparison and peer pressure on iPhone consumer happiness and innovativeness. Manaj. Dan Bisnis 2024, 23, 42–55. [Google Scholar] [CrossRef]
- Zhou, G.; Ali, S. Street food consumer behaviour decoded: Analysing decision-making styles, risk factors and the influential power of social media celebrities. Br. Food J. 2024, 126, 1781–1805. [Google Scholar] [CrossRef]
- Murrar, A.; Paz, V.; Batra, M.M.; Yerger, D.B. Strategies for driving customer adoption of AI-powered mobile apps: Insights from structural equation modeling in the water sector. J. Syst. Inf. Technol. 2025, 27, 343–364. [Google Scholar] [CrossRef]
- Payili, P. Human–AI collaboration in food delivery. International Journal of Scientific Research in Computer Science. Eng. Inf. Technol. 2025, 11, 45–52. [Google Scholar] [CrossRef]
- Alam, M.M.D.; Hussain, K.; Nusair, K.; Momotaz, S.N. Understanding user behaviors toward food delivery app services: The moderating effects of generation and usage frequency. J. Hosp. Tour. Insights 2025. Advance online publication. [Google Scholar] [CrossRef]
- Shankar, A.; Jebarajakirthy, C.D.P.; Nayal, P.; Maseeh, H.I.; Kumar, A.; Sivapalan, A. Online food delivery: A systematic synthesis of literature and a framework development. Int. J. Hosp. Manag. 2022, 107, 103240. [Google Scholar] [CrossRef]
- Wirtz, J.; Patterson, P.G.; Kunz, W.H.; Gruber, T.; Lu, V.N.; Paluch, S.; Martins, A. Service robots in hospitality and tourism: Investigating anthropomorphism and adoption. Ann. Tour. Res. 2018, 74, 437–440. [Google Scholar] [CrossRef]
- Gelfand, M.J.; Nishii, L.H.; Raver, J.L. On the nature and importance of cultural tightness–looseness. J. Appl. Psychol. 2006, 91, 1225–1244. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. The value of a shared experience: Relationships between co-experience and identification with other audiences and audience engagement behaviors on social media. Comput. Hum. Behav. 2024, 151, 108050. [Google Scholar] [CrossRef]
- Vukmirović, J.; Maričić, L.; Stanojevic, S.; Vukmirović, A.; Mandić, I. Considering the ethical aspects of artificial intelligence application from the consumer perspective. BizInfo 2025. forthcoming. [Google Scholar] [CrossRef]
- Dutta, K.; Pookulangara, S.; Wen, H.; Josiam, B.M.; Parsa, H.G. Hedonic and utilitarian motivations and the role of trust in using food delivery apps: An investigation from a developing economy. J. Foodserv. Bus. Res. 2025, 28, 1–25. [Google Scholar] [CrossRef]
- Chowdhury, F.; Swaminathan, S. Measuring and Validating Mobile App Convenience (M-App-Conv) Framework: A Cross-Country Study. J. Int. Consum. Mark. 2024, 37, 245–267. [Google Scholar] [CrossRef]
- Chou, M.-H.; Gomes, C. Politics of on-demand food delivery: Policy design and the power of algorithms. Rev. Policy Res. 2023, 40, 646–664. [Google Scholar] [CrossRef]
- Pop Stefanija, A.; Pierson, J. Practical AI transparency: Revealing datafication and algorithmic identities. J. Digit. Soc. Res. 2020, 2, 84–125. [Google Scholar] [CrossRef]
- Kirchhain, N. Riding Against the Algorithm: Algorithmic Management in On-Demand Food Delivery; Springer: Berlin/Heidelberg, Germany, 2023; pp. 28–39. [Google Scholar] [CrossRef]
- Yaiprasert, C.; Hidayanto, A.N. AI-powered in the digital age: Ensemble innovation personalizes the food recommendations. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100261. [Google Scholar] [CrossRef]
- Boldureanu, D.; Gutu, I.; Boldureanu, G. Understanding the dynamics of e WOM in food delivery services: A SmartPLS analysis of consumer acceptance. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 18. [Google Scholar] [CrossRef]
Design Type (Operational Definition) | Studies (n) | Share (%) |
---|---|---|
Surveys + SEM/PLS-SEM (attitudinal questionnaires analyzed with structural-equation or regression models) | 27 | 49% |
Log-mining and secondary behavioral data (mining App Store reviews, clickstreams, transactions, sensor logs) | 12 | 22% |
Mixed methods (behavioral traces paired with interviews, or follow-up surveys) | 6 | 11% |
Controlled experiments/usability tests (lab eye-tracking, online A/B, task-based tests) | 6 | 11% |
Qualitative interviews/grounded theory | 3 | 5% |
Engineering case studies/prototypes | 1 | 2% |
Total | 55 | 100% |
Top Publication Outlets | Number of Studies | ABDC (2019) |
---|---|---|
International Journal of Hospitality Management | 2 | A* |
International Journal of Human–Computer Interaction | 2 | A |
Journal of Retailing & Consumer Services | 2 | A |
British Food Journal | 3 | B |
Journal of Foodservice Business Research | 3 | C |
Journal of Association of Arab Universities for Tourism & Hospitality | 2 | – |
Conference Proceedings & Workshops † | 6 | – |
Theoretical Frameworks/Models | Frequency |
---|---|
Technology Acceptance Model (TAM) | 9 |
Unified Theory of Acceptance and Use of Technology (UTAUT) | 6 |
Expectation–Confirmation Theory (ECT) | 4 |
Stimulus–Organism–Response (SOR) Framework | 4 |
Trust–Risk Calculus Models | 3 |
Privacy Calculus Theory | 2 |
SERVQUAL/E-Service Quality Models | 2 |
Grounded Theory (inductive) | 2 |
Affective–Cognitive Dual-Process Models | 1 |
Atheoretical/Data-Driven | 12 |
Theme | Key Points Drawn from the 55 Studies |
---|---|
Instrumental Usability |
|
Algorithmic-Personalization Value |
|
Affective Engagement |
|
Data-Trust and Procedural Fairness |
|
Social Co-Experience |
|
Theme | Research Questions |
---|---|
Instrumental Usability |
|
Algorithmic Personalization |
|
Affective Engagement |
|
Data Trust Fairness |
|
Social Co-Experience |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shorbaji, M.F.; Alalwan, A.A.; Algharabat, R. AI-Enabled Mobile Food-Ordering Apps and Customer Experience: A Systematic Review and Future Research Agenda. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 156. https://doi.org/10.3390/jtaer20030156
Shorbaji MF, Alalwan AA, Algharabat R. AI-Enabled Mobile Food-Ordering Apps and Customer Experience: A Systematic Review and Future Research Agenda. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):156. https://doi.org/10.3390/jtaer20030156
Chicago/Turabian StyleShorbaji, Mohamad Fouad, Ali Abdallah Alalwan, and Raed Algharabat. 2025. "AI-Enabled Mobile Food-Ordering Apps and Customer Experience: A Systematic Review and Future Research Agenda" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 156. https://doi.org/10.3390/jtaer20030156
APA StyleShorbaji, M. F., Alalwan, A. A., & Algharabat, R. (2025). AI-Enabled Mobile Food-Ordering Apps and Customer Experience: A Systematic Review and Future Research Agenda. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 156. https://doi.org/10.3390/jtaer20030156