Predicting Conversion Rates in Online Hotel Bookings with Customer Reviews
Abstract
:1. Introduction
2. Literature Review
2.1. Conversion Rate and Information Processing Theory
2.2. Customer Review Emotion
2.3. Multi-Dimensional Emotional Framework
2.4. Linguistic Style Matching (LSM)
3. Methodology
3.1. Data Collection
3.2. Variables
3.3. Beta Regression Analysis
4. Results
5. Discussion and Implications
5.1. Theoretical Implications
5.2. Practical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, F. Hotel website quality, perceived flow, customer satisfaction and purchase intention. J. Hosp. Tour. Technol. 2016, 7, 213–228. [Google Scholar] [CrossRef]
- Heung, V.C. Barriers to implementing E-commerce in the travel industry: A practical perspective. Int. J. Hosp. Manag. 2003, 22, 111–118. [Google Scholar] [CrossRef]
- Grynberg, J. Nielsen Explores Consumers’ Connected Lives in Global E-Commerce Survey: 53% of the Global Population is Online. 2018. Available online: https://www.portada-online.com/2018/12/10/nielsen-explores-consumers-connected-lives-in-global-e-commerce-survey/ (accessed on 12 February 2019).
- Eventforte. Hospitality Online: Internet Travel & Hotel Booking Statistics. 2018. Available online: https://eventforte.com/hospitality-online-statistics.html (accessed on 22 February 2018).
- Gupta, R. Driving Traffic and Lifting Bookings o Hotel Brand Websites. 2012. Available online: https://www.eyefortravel.com/distribution-strategies/driving-traffic-and-lifting-bookings-hotel-brand-websites (accessed on 21 February 2019).
- Chatterjee, P.; Wang, Y. Online comparison shopping behavior of travel consumers. J. Qual. Assur. Hosp. Tour. 2012, 13, 1–23. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, S.; Li, H.; Zhang, Z. Booking now or later: Do online peer reviews matter? Int. J. Hosp. Manag. 2019, 77, 147–158. [Google Scholar] [CrossRef]
- Ongsakul, V.; Ali, F.; Wu, C.; Duan, Y.; Cobanoglu, C.; Ryu, K. Hotel website quality, performance, telepresence and behavioral intentions. Tour. Rev. 2020, 76, 681–700. [Google Scholar] [CrossRef]
- Wang, L.; Law, R.; Guillet, B.D.; Hung, K.; Fong, D.K.C. Impact of hotel website quality on online booking intentions: eTrust as a mediator. Int. J. Hosp. Manag. 2015, 47, 108–115. [Google Scholar] [CrossRef]
- Wong, J.K.; Sheth, J.N. Explaining intention-behavior discrepancy-a paradigm. Adv. Consum. Res. 1985, 12, 378–384. [Google Scholar]
- Cezar, A.; Ögüt, H. Analyzing conversion rates in online hotel booking: The role of customer reviews, recommendations and rank order in search listings. Int. J. Contemp. Hosp. Manag. 2016, 28, 286–304. [Google Scholar] [CrossRef]
- Horan, P.; McCarthy, P.; Frew, A. Analysis of the Volume, Value and Conversion Performance of a National Destination Marketing System Website. 2002, pp. 77–86. Available online: https://citeseerx.ist.psu.edu/viewdoc (accessed on 21 February 2018).
- Boss, J. The Real Talk on Hotel Website Conversion Rates. Available online: https://www.fastbooking.com/newsfeeds/the-real-talk-on-hotel-website-conversion-rates (accessed on 21 February 2018).
- Sismeiro, C.; Bucklin, R.E. Modeling purchase behavior at an e-commerce web site: A task-completion approach. J. Mark. Res. 2004, 41, 306–323. [Google Scholar] [CrossRef]
- Ayanso, A.; Yoogalingam, R. Profiling retail web site functionalities and conversion rates: A cluster analysis. Int. J. Electron. Commer. 2009, 14, 79–114. [Google Scholar] [CrossRef]
- Moe, W.W.; Fader, P.S. Dynamic conversion behavior at e-commerce sites. Manag. Sci. 2004, 50, 326–335. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-Y.; Wu, S.; Yoon, J. The impact of online recommendation and consumer feedback on sales. In Proceedings of the International Conference on Information Systems, New York, NY, USA, 6–8 August 2004; pp. 711–724. [Google Scholar]
- Hu, X.; Yang, Y. What makes online reviews helpful in tourism and hospitality? A bare-bones meta-analysis. J. Hosp. Mark. Manag. 2021, 30, 139–158. [Google Scholar] [CrossRef]
- Yang, Y.; Park, S.; Hu, X. Electronic word of mouth and hotel performance: A meta-analysis. Tour. Manag. 2018, 67, 248–260. [Google Scholar] [CrossRef]
- Ye, Q.; Law, R.; Gu, B. The impact of online user reviews on hotel room sales. Int. J. Hosp. Manag. 2009, 28, 180–182. [Google Scholar] [CrossRef]
- Ye, Q.; Law, R.; Gu, B.; Chen, W. The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings. Comput. Hum. Behav. 2011, 27, 634–639. [Google Scholar] [CrossRef]
- Amatulli, C.; De Angelis, M.; Stoppani, A. Analyzing online reviews in hospitality: Data-driven opportunities for predicting the sharing of negative emotional content. Curr. Issues Tour. 2019, 22, 1904–1917. [Google Scholar] [CrossRef]
- Hu, Y.H.; Chen, Y.L.; Chou, H.L. Opinion mining from online hotel reviews—A text summarization approach. Inf. Process. Manag. 2017, 53, 436–449. [Google Scholar] [CrossRef]
- Xu, X. Examining the relevance of online customer textual reviews on hotels’ product and service attributes. J. Hosp. Tour. Res. 2019, 43, 141–163. [Google Scholar] [CrossRef]
- Wang, X.; Tang, L.; Kim, E. More than words: Do emotional content and linguistic style matching matter on restaurant review helpfulness? Int. J. Hosp. Manag. 2019, 77, 438–447. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Wang, M. Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. Int. J. Hosp. Manag. 2019, 76, 111–121. [Google Scholar] [CrossRef]
- Ludwig, S.; De Ruyter, K.; Friedman, M.; Brüggen, E.C.; Wetzels, M.; Pfann, G. More than words: The influence of affective content and linguistic style matches in online reviews on conversion rates. J. Mark. 2013, 77, 87–103. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, R. Understanding hidden dimensions in textual reviews on Airbnb: An application of modified latent aspect rating analysis (LARA). Int. J. Hosp. Manag. 2019, 80, 144–154. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, X. Predicting the helpfulness of online restaurant reviews using different machine learning algorithms: A case study of yelp. Sustainability 2019, 11, 5254. [Google Scholar] [CrossRef]
- Cheng, M.; Jin, X. What do Airbnb users care about? An analysis of online review comments. Int. J. Hosp. Manag. 2019, 76, 58–70. [Google Scholar] [CrossRef]
- Pfister, H.R.; Böhm, G. The multiplicity of emotions: A framework of emotional functions in decision making. Judgm. Decis. Mak. 2008, 3, 5–17. [Google Scholar]
- Plutchik, R. The Psychology and Biology of Emotion; Harper Collins College Publishers: Palatine, IL, USA, 1994. [Google Scholar]
- Taylor, P.J.; Thomas, S. Linguistic style matching and negotiation outcome. Negot. Confl. Manag. Res. 2008, 1, 263–281. [Google Scholar] [CrossRef]
- Giles, H.; Coupland, N. Language: Contexts and Consequences; Open University Press: Milton Keynes, UK, 1991. [Google Scholar]
- Ireland, M.E.; Pennebaker, J.W. Language style matching in writing: Synchrony in essays, correspondence, and poetry. J. Pers. Soc. Psychol. 2010, 99, 549. [Google Scholar] [CrossRef]
- Byrne, D.; Clore, G.L.; Smeaton, G. The attraction hypothesis: Do similar attitudes affect anything? J. Personal. Soc. Psychol. 1986, 51, 1167–1170. [Google Scholar] [CrossRef]
- Bramblett, R. Best and Worst Hotel Booking Sites. 2019. Available online: https://www.frommers.com/slideshows/819303-best-and-worst-hotel-booking-sites (accessed on 22 February 2019).
- Zhou, M.; Ding, Z.; Tang, J.; Yin, D. Micro behaviors: A new perspective in e-commerce recommender systems. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Los Angeles, CA, USA, 5–9 February 2018; pp. 727–735. [Google Scholar]
- Di Fatta, D.; Patton, D.; Viglia, G. The determinants of conversion rates in SME e-commerce websites. J. Retail. Consum. Serv. 2018, 41, 161–168. [Google Scholar] [CrossRef]
- Kuan, H.-H.; Bock, G.-W.; Vathanophas, V. Comparing the effects of website quality on customer initial purchase and continued purchase at e-commerce websites. Behav. Inf. Technol. 2008, 27, 3–16. [Google Scholar] [CrossRef]
- Hu, D.J.; Hall, R.; Attenberg, J. Style in the long tail: Discovering unique interests with latent variable models in large scale social e-commerce. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1640–1649. [Google Scholar]
- Wu, X.; Bolivar, A. Predicting the conversion probability for items on C2C ecommerce sites. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, 2–6 November 2009; pp. 1377–1386. [Google Scholar]
- Li, H.; Kannan, P.K. Attributing conversions in a multichannel online marketing environment: An empirical model and a field experiment. J. Mark. Res. 2014, 51, 40–56. [Google Scholar] [CrossRef]
- Ghose, A.; Yang, S. An empirical analysis of search engine advertising: Sponsored search in electronic markets. Manag. Sci. 2009, 55, 1605–1622. [Google Scholar] [CrossRef] [Green Version]
- Rutz, O.J.; Bucklin, R.E. A Model of Individual Keyword Performance in Paid Search Advertising; Yale University and University of California: Rochester, NY, USA, 2007. [Google Scholar] [CrossRef]
- LaBerge, D.; Samuels, S.J. Toward a theory of automatic information processing in reading. Cogn. Psychol. 1974, 6, 293–323. [Google Scholar] [CrossRef]
- Miller, G.A.; Galanter, E.; Pribram, K.H. Plans and the Structure of Behavior; Adfo Books: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Straub, D.; Loch, K.; Evaristo, R.; Karahanna, E.; Srite, M. Toward a theory-based measurement of culture. J. Glob. Inf. Manag. 2002, 10, 13–23. [Google Scholar] [CrossRef]
- Alcántara-Pilar, J.M.; Blanco-Encomienda, F.J.; Armenski, T.; Del Barrio-García, S. The antecedent role of online satisfaction, perceived risk online, and perceived website usability on the affect towards travel destinations. J. Destin. Mark. Manag. 2018, 9, 20–35. [Google Scholar] [CrossRef]
- Gong, F.; Gage, S.J.L.; Tacata, L.A., Jr. Helpseeking behavior among Filipino Americans: A cultural analysis of face and language. J. Community Psychol. 2003, 31, 469–488. [Google Scholar] [CrossRef]
- Petersen, I.T.; Bates, J.E.; D’Onofrio, B.M.; Coyne, C.A.; Lansford, J.E.; Dodge, K.A.; Pettit, G.S.; Van Hulle, C.A. Language ability predicts the development of behavior problems in children. J. Abnorm. Psychol. 2013, 122, 542–557. [Google Scholar] [CrossRef]
- Van Vaerenbergh, Y.; Holmqvist, J. Speak my language if you want my money: Service language’s influence on consumer tipping behavior. Eur. J. Mark. 2013, 47, 1276–1292. [Google Scholar] [CrossRef]
- Zhang, K.Z.; Zhao, S.J.; Cheung, C.; Lee, M.K. Examining the influence of online reviews on consumers’ decision-making: A heuristic–systematic model. Decis. Support Syst. 2014, 67, 78–89. [Google Scholar] [CrossRef]
- Schindler, R.M.; Bickart, B. Perceived helpfulness of online consumer reviews: The role of message content and style. J. Consum. Behav. 2012, 11, 234–243. [Google Scholar] [CrossRef]
- Dienstbier, R.A. The role of emotion in moral socialization. In Emotion Cognition and Behavior; Izard, C., Kagan, J., Zajonc, R.B., Eds.; Cambridge University Press: New York, NY, USA, 1984; pp. 484–513. [Google Scholar]
- Martínez-Iñigo, D.; Totterdell, P.; Alcover, C.M.; Holman, D. Emotional labour and emotional exhaustion: Interpersonal and intrapersonal mechanisms. Work. Stress 2007, 21, 30–47. [Google Scholar] [CrossRef]
- Lee, M.; Jeong, M.; Lee, J. Roles of negative emotions in customers’ perceived helpfulness of hotel reviews on a user-generated review website: A text mining approach. Int. J. Contemp. Hosp. Manag. 2017, 29, 762–783. [Google Scholar] [CrossRef]
- Kim, E.; Tang, R. Rectifying failure of service: How customer perceptions of justice affect their emotional response and social media testimonial. J. Hosp. Mark. Manag. 2016, 25, 897–924. [Google Scholar] [CrossRef]
- Lichtenstein, S.; Slovic, P. (Eds.) The Construction of Preference; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Martin, L.; Sintsova, V.; Pu, P. Are influential writers more objective? An analysis of emotionality in review comments. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; pp. 799–804. [Google Scholar]
- Rahmani, K.; Gnoth, J.; Mather, D. A psycholinguistic view of tourists’ emotional experiences. J. Travel Res. 2019, 58, 192–206. [Google Scholar] [CrossRef]
- Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Scherer, K.R.; Shuman, V.; Fontaine, J.R.J.; Soriano, C. The GRID meets the Wheel: Assessing emotional feeling via self-report. In Components of Emotional Meaning: A Sourcebook; Fontaine, J.R.J., Scherer, K.R., Soriano, C., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 281–298. [Google Scholar]
- Fredrickson, B.L.; Tugade, M.M.; Waugh, C.E.; Larkin, G.R. What good are positive emotions in crisis? A prospective study of resilience and emotions following the terrorist attacks on the United States on September 11th, 2001. J. Personal. Soc. Psychol. 2003, 84, 365. [Google Scholar] [CrossRef]
- Plutchik, R. The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 2001, 89, 344–350. [Google Scholar] [CrossRef]
- Gallois, C.; Giles, H. Communication Accommodation Theory. In The International Encyclopedia of Language and Social Interaction; John Wiley & Sons: Boston, MA, USA, 2015; pp. 159–176. [Google Scholar]
- Dragojevic, M.; Gasiorek, J.; Giles, H. Communication accommodation theory. In Encyclopedia of Interpersonal Communication; Berger, C.R., Roloff, M.L., Eds.; Blackwell/Wiley: Hoboken, NJ, USA, 2016; Volume 1, pp. 176–196. [Google Scholar]
- Giles, H.; Willemyns, M.; Gallois, C.; Anderson, M.C. Accommodating a new frontier: The context of law enforcement. In Social Communication; Fiedler, K., Ed.; Psychology Press: New York, NY, USA, 2007; pp. 129–162. [Google Scholar]
- Fayard, A.L.; DeSanctis, G. Enacting language games: The development of a sense of ‘we-ness’ in online forums. Inf. Syst. J. 2010, 20, 383–416. [Google Scholar] [CrossRef]
- Gruss, R.; Kim, E.; Abrahams, A. Engaging restaurant customers on facebook: The power of belongingness appeals on social media. J. Hosp. Tour. Res. 2020, 44, 201–228. [Google Scholar] [CrossRef]
- Chung, C.; Pennebaker, J.W. The psychological functions of function words. Soc. Commun. 2007, 1, 343–359. [Google Scholar]
- Liu, X.; Liu, C. A Study on the Effect of Language Style Matching of a Review and the Whole Reviews on Perceived Customer Review Helpfulness. In Proceedings of the Wuhan International Conference on e-Business, Wuhan, China, 26–28 May 2017; pp. 570–579. [Google Scholar]
- Lu, Q.; Pan, S.; Wang, L.; Pan, J.; Wan, F.; Yang, H. A practical framework of conversion rate prediction for online display advertising. In Proceedings of the ADKDD 17, Halifax, NS, Canada, 14 August 2017; pp. 1–9. [Google Scholar]
- Tallis, M.; Yadav, P. Reacting to variations in product demand: An application for conversion rate (cr) prediction in sponsored search. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1856–1864. [Google Scholar]
- Touropia. 25 Best Places to Visit in the USA. 2015. Available online: https://www.touropia.com/best-places-to-visit-in-usa (accessed on 3 November 2018).
- Pennebaker, J.W.; Boyd, R.L.; Jordan, K.; Blackburn, K. Development and Psychometric Properties of LIWC-2015; University of Texas at Austin: Austin, TX, USA, 2015. [Google Scholar]
- Gonzales, A.L.; Hancock, J.T.; Pennebaker, J. Language style matching as a predictor of social dynamics in small groups. Commun. Res. 2010, 37, 3–19. [Google Scholar] [CrossRef]
- Mohammad, S.; Turney, P.D. Crowdsourcing a word-emotion association lexicon. Comput. Intell. 2013, 29, 436–465. [Google Scholar] [CrossRef] [Green Version]
- Cribari-Neto, F.; Zeileis, A. Beta regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef]
- Radojevic, T.; Stanisic, N.; Stanic, N. Inside the rating scores: A multilevel analysis of the factors influencing customer satisfaction in the hotel industry. Cornell Hosp. Q. 2017, 58, 134–164. [Google Scholar] [CrossRef]
- Vuust, P.; Frith, C.D. Anticipation is the key to understanding music and the effects of music on emotion. Behav. Brain Sci. 2008, 31, 599–600. [Google Scholar] [CrossRef]
- Chang, K.C. Examining the effect of tour guide performance, tourist trust, tourist satisfaction, and flow experience on tourists’ shopping behavior. Asia Pac. J. Tour. Res. 2014, 19, 219–247. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. In Handbook of the Fundamentals of Financial Decision Making: Part I; World Scientific: Singapore, 2013; pp. 99–127. [Google Scholar]
- Reisenzein, R. Exploring the strength of association between the components of emotion syndromes: The case of surprise. Cogn. Emot. 2000, 14, 1–38. [Google Scholar] [CrossRef]
- Lam, W.; Chen, Z. When I put on my service mask: Determinants and outcomes of emotional labor among hotel service providers according to affective event theory. Int. J. Hosp. Manag. 2012, 31, 3–11. [Google Scholar] [CrossRef]
Emotional Dimensions | Sample Words |
---|---|
Anger | annoying, battle, complaint, dispute |
Anticipation | attempt, countdown, develop, expected |
Disgust | abject, contamination, defective, falsity |
Fear | afraid, barbarian, cautionary, defend |
Joy | abundant, beautiful, charmed, delicious |
Sadness | abortive, badly, embarrass, fell |
Surprise | amaze, occasional, quickness, rapid |
Trust | accountable, believed, cohesive, deputy |
Category | Examples |
---|---|
Personal pronouns | I, he, she |
Impersonal pronouns | anyone, everyone, other |
Articles | a, an, the |
Conjunctions | as, if, when |
Prepositions | across, between, for |
Auxiliary verbs | can, do, become |
High-frequency adverbs | extremely, hence, indeed |
Negations | don’t, doesn’t, no |
Quantifiers | all, every, few |
Variable | Mean | Median | S.D. | Min | Max | Range |
---|---|---|---|---|---|---|
CR | 0.389 | 0.357 | 0.105 | 0.004 | 0.891 | 0.888 |
Anger | 1.724 | 0.000 | 3.991 | 0.000 | 75.000 | 75.000 |
Anticipation | 3.321 | 1.790 | 4.906 | 0.000 | 60.000 | 60.000 |
Disgust | 1.617 | 0.000 | 4.234 | 0.000 | 75.000 | 75.000 |
Fear | 1.074 | 0.000 | 3.051 | 0.000 | 75.000 | 75.000 |
Joy | 4.904 | 3.030 | 6.465 | 0.000 | 80.000 | 80.000 |
Sadness | 1.638 | 0.000 | 3.503 | 0.000 | 75.000 | 75.000 |
Surprise | 1.672 | 0.000 | 3.722 | 0.000 | 50.000 | 50.000 |
Trust | 5.203 | 3.450 | 6.458 | 0.000 | 80.000 | 80.000 |
LSM | 0.501 | 0.530 | 0.236 | 0.010 | 0.940 | 0.930 |
Distance from a hotel to the city center | 3.060 | 1.100 | 4.121 | 0.066 | 19.300 | 19.234 |
Hotel room rate | 139.2876 | 129 | 87.2025 | 29 | 849 | 820 |
Hotel star rating | 2.9576 | 3.0000 | 0.9338 | 0 | 5 | 5 |
Risk-free cancellation policy | 0.6290 | 1.0000 | 0.4831 | 0 | 1 | 1 |
High-demand status | 0.6546 | 1.0000 | 0.4755 | 0 | 1 | 1 |
Model with Only Control Variables | Research Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Estimate | Std. Error | z Value | Pr(>|z|) | Estimate | Std. Error | z Value | Pr(>|z|) | ||
(Intercept) | −0.69 | 0.12 | −5.70 | 0.00 | *** | −0.70 | 0.18 | −3.92 | 0.00 | *** |
Distance from a hotel to the city center | −0.02 | 0.01 | −2.67 | 0.01 | ** | −0.01 | 0.01 | −1.98 | 0.04 | ** |
Hotel star rating | −0.10 | 0.03 | −3.32 | 0.00 | *** | −0.06 | 0.02 | −2.46 | 0.01 | ** |
Hotel room rate | 0.00 | 0.00 | −3.63 | 0.00 | *** | −0.01 | 0.00 | −2.00 | 0.04 | ** |
Risk-free cancellation policy | 0.25 | 0.05 | 4.61 | 0.00 | *** | 0.06 | 0.04 | 1.38 | 0.17 | |
High-demand status | 0.34 | 0.06 | 6.08 | 0.00 | *** | 0.17 | 0.04 | 3.98 | 0.00 | *** |
City_Houston | −0.23 | 0.11 | −2.08 | 0.04 | ** | −0.08 | 0.08 | −1.02 | 0.31 | |
City_LasVegas | 0.04 | 0.10 | 0.39 | 0.69 | 0.14 | 0.08 | 1.85 | 0.06 | ||
City_NewYorkCity | −0.18 | 0.09 | −1.95 | 0.05 | −0.03 | 0.07 | −0.48 | 0.63 | ||
City_Orlando | −0.07 | 0.11 | −0.63 | 0.53 | 0.07 | 0.08 | 0.81 | 0.42 | ||
City_SanFrancisco | −0.02 | 0.10 | −0.16 | 0.88 | −0.05 | 0.07 | −0.69 | 0.49 | ||
LSM | 0.71 | 0.26 | 2.78 | 0.01 | *** | |||||
Anger | −0.04 | 0.01 | −5.57 | 0.00 | *** | |||||
Anticipation | 0.02 | 0.01 | 2.17 | 0.03 | ** | |||||
Disgust | −0.02 | 0.01 | −3.68 | 0.00 | *** | |||||
Fear | 0.01 | 0.01 | 1.00 | 0.32 | ||||||
Joy | −0.02 | 0.02 | −1.18 | 0.24 | ||||||
Sadness | 0.01 | 0.01 | 1.19 | 0.24 | ||||||
Surprise | 0.01 | 0.02 | 0.55 | 0.58 | ||||||
Trust | 0.03 | 0.01 | 2.06 | 0.04 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Wang, X.; Kim, E. Predicting Conversion Rates in Online Hotel Bookings with Customer Reviews. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1264-1278. https://doi.org/10.3390/jtaer17040064
Tang L, Wang X, Kim E. Predicting Conversion Rates in Online Hotel Bookings with Customer Reviews. Journal of Theoretical and Applied Electronic Commerce Research. 2022; 17(4):1264-1278. https://doi.org/10.3390/jtaer17040064
Chicago/Turabian StyleTang, Liang, Xi Wang, and Eojina Kim. 2022. "Predicting Conversion Rates in Online Hotel Bookings with Customer Reviews" Journal of Theoretical and Applied Electronic Commerce Research 17, no. 4: 1264-1278. https://doi.org/10.3390/jtaer17040064
APA StyleTang, L., Wang, X., & Kim, E. (2022). Predicting Conversion Rates in Online Hotel Bookings with Customer Reviews. Journal of Theoretical and Applied Electronic Commerce Research, 17(4), 1264-1278. https://doi.org/10.3390/jtaer17040064