Investigating the Impact of Situational Influences and Social Support on Social Commerce during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses’ Development
2.1. Situational Influences
2.2. Social Support
2.3. The Big Five Personality Traits
2.4. Online Purchase Intention
3. Research Methodology
3.1. Research Setting
3.2. Scale Measurement
3.3. Data Analysis
3.4. Social Support as a Higher-Order Component
3.5. Results: Evaluation of the Measurement Models
3.6. Results: Evaluation of the Structural Model
4. Discussion
4.1. Theoretical Contributions
4.2. Practical Contributions
5. Limitations and Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Constructs and Indicators | Agreeableness Item Loadings | CR | AVE | Conscientiousness Item Loadings | CR | AVE | Extraversion Item Loadings | CR | AVE | Neuroticism Item Loadings | CR | AVE | Openness to Experience Item Loadings | CR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Emotional Support | 0.92 | 0.74 | 0.90 | 0.69 | 0.90 | 0.69 | 0.92 | 0.73 | 0.89 | |||||
SE1 | 0.78 | 0.71 | 0.71 | 0.84 | 0.74 | |||||||||
SE2 | 0.91 | 0.91 | 0.87 | 0.88 | 0.87 | |||||||||
SE3 | 0.86 | 0.83 | 0.83 | 0.86 | 0.81 | |||||||||
SE4 | 0.89 | 0.87 | 0.90 | 0.86 | 0.86 | |||||||||
Informational Support | 0.94 | 0.85 | 0.95 | 0.86 | 0.95 | 0.86 | 0.93 | 0.81 | 0.93 | |||||
SI1 | 0.92 | 0.92 | 0.92 | 0.87 | 0.91 | |||||||||
SI2 | 0.92 | 0.93 | 0.92 | 0.92 | 0.90 | |||||||||
SI3 | 0.92 | 0.93 | 0.95 | 0.91 | 0.91 | |||||||||
Convenience | 0.93 | 0.86 | 0.93 | 0.86 | 0.91 | 0.83 | 0.96 | 0.92 | 0.93 | |||||
CV3 | 0.92 | 0.94 | 0.92 | 0.96 | 0.92 | |||||||||
CV4 | 0.94 | 0.91 | 0.90 | 0.96 | 0.94 | |||||||||
Positive Mood | 0.89 | 0.72 | 0.90 | 0.74 | 0.90 | 0.76 | 0.93 | 0.83 | 0.90 | |||||
PM1 | 0.85 | 0.83 | 0.83 | 0.9 | 0.86 | |||||||||
PM2 | 0.87 | 0.91 | 0.92 | 0.91 | 0.88 | |||||||||
PM3 | 0.83 | 0.84 | 0.86 | 0.92 | 0.86 | |||||||||
Negative Mood | 0.94 | 0.84 | 0.94 | 0.85 | 0.96 | 0.88 | 0.95 | 0.87 | 0.94 | |||||
NM1 | 0.90 | 0.92 | 0.91 | 0.94 | 0.92 | |||||||||
NM2 | 0.95 | 0.95 | 0.97 | 0.96 | 0.95 | |||||||||
NM3 | 0.90 | 0.89 | 0.94 | 0.89 | 0.88 | |||||||||
Purchase Intention | 0.92 | 0.71 | 093 | 0.72 | 0.93 | 0.73 | 0.93 | 0.72 | 0.92 | |||||
PI1 | 0.86 | 0.85 | 0.85 | 0.86 | ||||||||||
PI2 | 0.86 | 0.86 | 0.90 | 0.91 | 0.83 | |||||||||
PI3 | 0.87 | 0.88 | 0.87 | 0.89 | 0.86 | |||||||||
PI4 | 0.85 | 0.85 | 0.84 | 0.83 | 0.85 | |||||||||
PI5 | 0.76 | 0.80 | 0.79 | 0.74 | 0.81 |
Appendix B
Constructs | Social Support | Convenience | Positive Mood | Negative Mood | Purchase Intention |
---|---|---|---|---|---|
Social Support | 0.84 | ||||
Convenience | −0.10 | 0.93 | |||
(0.12) | |||||
Positive Mood | 0.32 | 0.12 | 0.85 | ||
(0.39) | (0.15) | ||||
Negative Mood | 0.01 | −0.25 | −0.30 | 0.92 | |
(0.05) | (0.28) | (0.34) | |||
Purchase Intention | 0.08 | 0.31 | 0.52 | −0.32 | 0.84 |
(0.11) | (0.36) | (0.35) | (0.35) |
Constructs | Social Support | Convenience | Positive Mood | Negative Mood | Purchase Intention |
---|---|---|---|---|---|
Social Support | 0.84 | ||||
Convenience | −0.10 | 0.93 | |||
(0.12) | |||||
Positive Mood | 0.32 | 0.12 | 0.85 | ||
(0.39) | (0.15) | ||||
Negative Mood | 0.01 | −0.25 | −0.30 | 0.92 | |
(0.05) | (0.28) | (0.34) | |||
Purchase Intention | 0.08 | 0.31 | 0.52 | −0.32 | 0.84 |
(0.11) | (0.36) | (0.35) | (0.35) |
Constructs | Social Support | Convenience | Positive Mood | Negative Mood | Purchase Intention |
---|---|---|---|---|---|
Social Support | 0.82 | ||||
Convenience | −0.20 | 0.91 | |||
(0.24) | |||||
Positive Mood | 0.44 | 0.25 | 0.87 | ||
(0.50) | (0.31) | ||||
Negative Mood | 0.00 | −0.43 | −0.46 | 0.94 | |
(0.08) | (0.49) | (0.53) | |||
Purchase Intention | 0.19 | 0.37 | 0.65 | −0.46 | 0.85 |
(0.23) | (0.43) | (0.75) | (0.52) |
Constructs | Social Support | Convenience | Positive Mood | Negative Mood | Purchase Intention |
---|---|---|---|---|---|
Social Support | 0.83 | ||||
Convenience | 0.14 | 0.96 | |||
(0.15) | |||||
Positive Mood | 0.41 | 0.33 | 0.91 | ||
(0.36) | (0.36) | ||||
Negative Mood | 0.09 | −0.34 | −0.22 | 0.93 | |
(0.37) | (0.37) | (0.24) | |||
Purchase Intention | 0.12 | 0.55 | 0.55 | −0.37 | 0.85 |
(0.61) | (0.61) | (0.59) | (0.40) |
Constructs | Social Support | Convenience | Positive Mood | Negative Mood | Purchase Intention |
---|---|---|---|---|---|
Social Support | 0.79 | ||||
Convenience | −0.03 | 0.93 | |||
(0.09) | |||||
Positive Mood | 0.26 | 0.26 | 0.87 | ||
(0.44) | (0.30) | ||||
Negative Mood | −0.29 | −0.29 | -0.37 | 0.92 | |
(0.06) | (0.33) | (0.41) | |||
Purchase Intention | 0.40 | 0.40 | 0.60 | −0.38 | 0.85 |
(0.21) | (0.46) | (0.68) | (0.42) |
References
- Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 5 November 2020).
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, A.; Kaakinen, M.; Latikka, R.; Savolainen, I.; Savela, N.; Koivula, A. Regulation and Trust: 3-Month Follow-up Study on COVID-19 Mortality in 25 European Countries. JMIR Public Health Surveill 2020, 6, e19218. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Gustafsson, A. Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. J. Bus. Res. 2020, 118, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.T.T. Managing the effectiveness of e-commerce platforms in a pandemic. J. Retail. Consum. Serv. 2021, 58, 102287. [Google Scholar] [CrossRef]
- Bentall, R.P.; Lloyd, A.; Bennett, K.; McKay, R.; Mason, L.; Murphy, J.; McBride, O.; Hartman, T.K.; Gibson-Miller, J.; Levita, L.; et al. Pandemic buying: Testing a psychological model of over-purchasing and panic buying using data from the United Kingdom and the Republic of Ireland during the early phase of the COVID-19 pandemic. PLoS ONE 2021, 16, e0246339. [Google Scholar] [CrossRef]
- Kim, R.Y. The Impact of COVID-19 on Consumers: Preparing for Digital Sales. IEEE Eng. Manage. Rev. 2020, 48, 212–218. [Google Scholar] [CrossRef]
- Tajvidi, M.; Wang, Y.; Hajli, N.; Love, P.E.D. Brand value Co-creation in social commerce: The role of interactivity, social support, and relationship quality. Comput. Hum. Behav. 2017, 115, 105238. [Google Scholar] [CrossRef] [Green Version]
- Busalim, A.H.; Ghabban, F.; Hussin, A.R.C. Customer engagement behaviour on social commerce platforms: An empirical study. Technol. Soc. 2021, 64, 101437. [Google Scholar] [CrossRef]
- Horng, S.-M.; Wu, C.-L. How behaviors on social network sites and online social capital influence social commerce intentions. Inf. Manag. 2020, 57, 103176. [Google Scholar] [CrossRef]
- Ko, H.-C. Social desire or commercial desire? The factors driving social sharing and shopping intentions on social commerce platforms. Electron. Commer. Res. Appl. 2018, 28, 1–15. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Z.; Davison, R.M.; Liu, Y. Charting consumers’ continued social commerce intention. Internet Res. 2021, in press. [Google Scholar] [CrossRef]
- Lin, J.; Li, L.; Yan, Y.; Turel, O. Understanding Chinese consumer engagement in social commerce. Internet Res. 2018, 28, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.-H.; Li, C.-Y. Leveraging sociability for trust building on social commerce sites. Electron. Commer. Res. Appl. 2020, 40, 100907. [Google Scholar] [CrossRef]
- Huang, Z.; Benyoucef, M. The effects of social commerce design on consumer purchase decision-making: An empirical study. Electron. Commer. Res. Appl. 2017, 25, 40–58. [Google Scholar] [CrossRef]
- Wang, X.; Tajvidi, M.; Lin, X.; Hajli, N. Towards an Ethical and Trustworthy Social Commerce Community for Brand Value Co-creation: A trust-Commitment Perspective. J. Bus. Ethics 2020, 167, 137–152. [Google Scholar] [CrossRef]
- Guo, L.; Hu, X.; Lu, J.; Ma, L. Effects of customer trust on engagement in live streaming commerce: Mediating role of swift guanxi. Internet Res. 2021, in press. [Google Scholar] [CrossRef]
- Abed, S.S. Social commerce adoption using TOE framework: An empirical investigation of Saudi Arabian SMEs. Int. J. Inf. Manag. 2020, 53, 102118. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Wang, B.; Pan, Z. How do product recommendations affect impulse buying? An empirical study on WeChat social commerce. Inf. Manag. 2019, 56, 236–248. [Google Scholar] [CrossRef]
- Areiza-Padilla, J.A.; Galindo-Becerra, T.; Del Río, M.C. Social Networks and E-Loyalty: A New Means of Sports Training during COVID-19 Quarantines. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2808–2823. [Google Scholar] [CrossRef]
- Esmaeili, L.; Hashemi, G.S.A. A systematic review on social commerce. J. Strateg. Mark. 2019, 27, 317–355. [Google Scholar] [CrossRef]
- Gu, S.; Ślusarczyk, B.; Hajizada, S.; Kovalyova, I.; Sakhbieva, A. Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2263–2281. [Google Scholar] [CrossRef]
- Belk, R.W. Situational Variables and Consumer Behavior. J. Consum. Res. 1975, 2, 157–164. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Y.; Shi, X.; Chen, K.Z. The role of e-commerce in the urban food system under COVID-19: Lessons from China. China Agric. Econ. Rev. 2020, in press. [Google Scholar] [CrossRef]
- Pereira, H.G.; de Fátima Salgueiro, M.; Mateus, I. Say yes to Facebook and get your customers involved! Relationships in a world of social networks. Bus. Horiz. 2014, 57, 695–702. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, Z.; Jun, M. Measuring consumer perceptions of online shopping convenience. J. Serv. Manag. 2013, 24, 191–214. [Google Scholar] [CrossRef]
- Naeem, M. Understanding the customer psychology of impulse buying during COVID-19 pandemic: Implications for retailers. Int. J. Retail. Distrib. Manag. 2021, 49, 377–393. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Yeh, T.-L.; Lo, W.-C. Impacts on Online Impulse Purchase through Perceived Cognition. J. Int. Consum. Mark. 2017, 29, 319–330. [Google Scholar] [CrossRef]
- Zhuang, G.; Tsang, A.S.L.; Zhou, N.; Li, F.; Nicholls, J.A.F. Impacts of situational factors on buying decisions in shopping malls. Eur. J. Mark. 2006, 40, 17–43. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y. Does online shopping make consumers feel better? Exploring online retail therapy effects on consumers’ attitudes towards online shopping malls. Asia Pac. J. Market. Logist. 2019, 31, 464–479. [Google Scholar] [CrossRef]
- Gottlieb, B.H.; Bergen, A.E. Social support concepts and measures. J. Psychosom. Res. 2010, 69, 511–520. [Google Scholar] [CrossRef]
- Berkman, L.F.; Glass, T.; Brissette, I.; Seeman, T.E. From social integration to health: Durkheim in the new millennium. Soc. Sci. Med. 2000, 51, 843–857. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, D.; Li, Y. Delineating the dimensions of social support on social networking sites and their effects: A comparative model. Comput. Hum. Behav. 2016, 58, 421–430. [Google Scholar] [CrossRef]
- Pfeil, U. Online support communities. In Social Computing and Virtual Communities; Zaphiris, P., Ang, C.S., Eds.; Chapman & Hall/CRC: New York, NY, USA, 2009; pp. 122–150. [Google Scholar]
- Liang, T.-P.; Ho, Y.-T.; Li, Y.-W.; Turban, E. What Drives Social Commerce: The Role of Social Support and Relationship Quality. Int. J. Electron. Commer. 2011, 16, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Shen, X.-L. Consumers’ decisions in social commerce context: An empirical investigation. Decis. Support. Syst. 2015, 79, 55–64. [Google Scholar] [CrossRef]
- Chiu, C.-M.; Huang, H.-Y.; Cheng, H.-L.; Sun, P.-C. Understanding online community citizenship behaviors through social support and social identity. Int. J. Inf. Manag. 2015, 35, 504–519. [Google Scholar] [CrossRef]
- Sen, S.; Raghu, T.S.; Vinze, A. Demand Information Sharing in Heterogeneous IT Services Environments. J. Manag. Inf. Syst. 2010, 26, 287–316. [Google Scholar] [CrossRef]
- Kraut, R.; Kiesler, S.; Boneva, B.; Cummings, J.; Helgeson, V.; Crawford, A. Internet Paradox Revisited. J. Soc. Issues 2002, 58, 49–74. [Google Scholar] [CrossRef]
- Ridings, C.M.; Gefen, D. Virtual community attraction: Why people hang out online. J. Comput.-Mediat. Commun. 2004, 10, JCMC10110. [Google Scholar] [CrossRef]
- Wellman, B.; Wortley, S. Different strokes from different folks: Community ties and social support. Am. J. Sociol. 1990, 96, 558–588. [Google Scholar] [CrossRef] [Green Version]
- Bagozzi, R.P.; Dholakia, U.M. Intentional social action in virtual communities. J. Interact. Mark. 2002, 16, 2–21. [Google Scholar] [CrossRef]
- Liang, T.-P.; Turban, E. Introduction to the special issue social commerce: A research framework for social commerce. Int. J. Electron. Commer. 2011, 16, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, C.; Wei, Y. Social Media Peer Communication and Impacts on Purchase Intentions: A Consumer Socialization Framework. J. Interact. Mark. 2012, 26, 198–208. [Google Scholar] [CrossRef]
- Muangmee, C.; Kot, S.; Meekaewkunchorn, N.; Kassakorn, N.; Khalid, B. Factors Determining the Behavioral Intention of Using Food Delivery Apps during COVID-19 Pandemics. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1297–1310. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, J. Third-Party Product Review and Firm Marketing Strategy. Mark. Sci. 2005, 24, 218–240. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, M.; Sun, S.; Amidi, A.; Khani, F.; Khani, F. The applications of social commerce constructs. Int. J. Inf. Manag. 2016, 36, 425–432. [Google Scholar] [CrossRef]
- Herrando, C.; Jimenez-Martinez, J.; Martin-De Hoyos, M.J. Tell me your age and I tell you what you trust: The moderating effect of generations. Internet Res. 2019, 29, 799–817. [Google Scholar] [CrossRef]
- Tunçgenç, B.; El Zein, M.; Sulik, J.; Newson, M.; Zhao, Y.; Dezecache, G.; Deroy, O. Social influence matters: We follow pandemic guidelines most when our close circle does. Br. J. Psychol. 2021, 112, 763–780. [Google Scholar] [CrossRef] [PubMed]
- Jani, D.; Han, H. Personality, social comparison, consumption emotions, satisfaction, and behavioral intentions. Int. J. Contemp. Hosp. Manag. 2013, 25, 970–993. [Google Scholar] [CrossRef] [Green Version]
- Costa Jr, P.T.; McCrae, R.R. The Revised NEO Personality Inventory (NEO-PI-R). In The SAGE Handbook of Personality Theory and Assessment, Vol 2: Personality Measurement and Testing; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2008; pp. 179–198. [Google Scholar]
- Błachnio, A.; Przepiorka, A.; Senol-Durak, E.; Durak, M.; Sherstyuk, L. The role of personality traits in Facebook and Internet addictions: A study on Polish, Turkish, and Ukrainian samples. Comput. Hum. Behav. 2017, 68, 269–275. [Google Scholar] [CrossRef]
- Donnellan, M.B.; Oswald, F.L.; Baird, B.M.; Lucas, R.E. The Mini-IPIP Scales: Tiny-yet-effective measures of the Big Five Factors of Personality. Psychol. Assess. 2006, 18, 192–203. [Google Scholar] [CrossRef] [PubMed]
- McCrae, R.R.; Costa, P.T. A contemplated revision of the NEO Five-Factor Inventory. Personal. Individ. Differ. 2004, 36, 587–596. [Google Scholar] [CrossRef]
- Schmitt, D.P.; Realo, A.; Voracek, M.; Allik, J. Why can’t a man be more like a woman? Sex differences in Big Five personality traits across 55 cultures. J. Personal. Soc. Psychol. 2008, 94, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.; Phillips, J.G. Personality and self reported mobile phone use. Comput. Hum. Behav. 2008, 24, 346–360. [Google Scholar] [CrossRef]
- McCrae, R.R.; John, O.P. An Introduction to the Five-Factor Model and Its Applications. J. Personal. 1992, 60, 175–215. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.D.; Suls, J. Self-, other-, and ideal-judgments of risk and caution as a function of the five-factor model of personality. Personal. Individ. Differ. 2000, 28, 425–436. [Google Scholar] [CrossRef]
- Ozer, D.J.; Benet-Martínez, V. Personality and the Prediction of Consequential Outcomes. Annu. Rev. Psychol. 2006, 57, 401–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCrae, R.R.; Costa, P.T. Validation of the five-factor model of personality across instruments and observers. J. Personal. Soc. Psychol. 1987, 52, 81–90. [Google Scholar] [CrossRef]
- Ha, H.-Y. The effects of online shopping attributes on satisfaction–purchase intention link: A longitudinal study. Int. J. Consum. Stud. 2012, 36, 327–334. [Google Scholar] [CrossRef]
- Park, J.; Kim, J. The Importance of Perceived Consumption Delay in Internet Shopping:Time-Related Information, Time Risk, Attitude, and Purchase Intention. Cloth. Text. Res. J. 2007, 25, 24–41. [Google Scholar] [CrossRef]
- Koo, D.-M.; Ju, S.-H. The interactional effects of atmospherics and perceptual curiosity on emotions and online shopping intention. Comput. Hum. Behav. 2010, 26, 377–388. [Google Scholar] [CrossRef]
- Lee, M.; Lee, H.-H. Do parasocial interactions and vicarious experiences in the beauty YouTube channels promote consumer purchase intention? Int. J. Consum. Stud. 2021, in press. [Google Scholar] [CrossRef]
- Chen, C.; Xie, K.; Wang, S. The influence of incidental affect and mood-changing price on online booking intention. J. Hosp. Tour. Technol. 2017, 8, 357–371. [Google Scholar] [CrossRef]
- Nguyen, L.T.V.; Conduit, J.; Lu, V.N.; Hill, S.R. Collective empowerment in online communities: Conceptualization, scale refinement, and validation. J. Mark. Theory Pract. 2020, 28, 301–317. [Google Scholar] [CrossRef]
- Bai, Y.; Yao, Z.; Dou, Y.-F. Effect of social commerce factors on user purchase behavior: An empirical investigation from renren.com. Int. J. Inf. Manag. 2015, 35, 538–550. [Google Scholar] [CrossRef]
- Hajli, M.N. The role of social support on relationship quality and social commerce. Technol. Forecast. Soc. Chang. 2014, 87, 17–27. [Google Scholar] [CrossRef]
- Sheikh, Z.; Islam, T.; Rana, S.; Hameed, Z.; Saeed, U. Acceptance of social commerce framework in Saudi Arabia. Telemat. Inform. 2017, 34, 1693–1708. [Google Scholar] [CrossRef]
- Bianchi, C.; Andrews, L.; Wiese, M.; Fazal-E-Hasan, S. Consumer intentions to engage in s-commerce: A cross-national study. J. Mark. Manag. 2017, 33, 464–494. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Babin, B.J.; Anderson, R.E.; Black, W.C. Multivariate Data Analysis, 8th ed.; Cengage Learning EMEA: Hampshire, UK, 2019. [Google Scholar]
- Bazi, S.; Hajli, A.; Hajli, N.; Mohana, S.; Lin, X. Winning engaged consumers: The rules of brand engagement and intention of co-creation in social commerce. Inf. Technol. People 2019, 33, 456–476. [Google Scholar] [CrossRef]
- Collier, J.E.; Sherrell, D.L. Examining the influence of control and convenience in a self-service setting. J. Acad. Mark. Sci. 2010, 38, 490–509. [Google Scholar] [CrossRef]
- Pappas, I.O.; Kourouthanassis, P.E.; Giannakos, M.N.; Chrissikopoulos, V. Shiny happy people buying: The role of emotions on personalized e-shopping. Electron. Mark. 2014, 24, 193–206. [Google Scholar] [CrossRef]
- Dodds, W.B.; Monroe, K.B.; Grewal, D. Effects of Price, Brand, and Store Information on Buyers’ Product Evaluations. J. Mark. Res. 1991, 28, 307–319. [Google Scholar] [CrossRef]
- John, O.P.; Donahue, E.; Kentle, R.L. The Big Five Inventory: Versions 4a and 54 [Technical Report]; University of California, Institute of Personality and Social Research: Berkeley, CA, USA, 1991. [Google Scholar]
- Benet-Martínez, V.; John, O.P. Los Cinco Grandes Across Cultures and Ethnic Groups: Multitrait Multimethod Analyses of the Big Five in Spanish and English. J. Personal. Soc. Psychol. 1998, 75, 729–750. [Google Scholar] [CrossRef]
- Walczuch, R.; Lundgren, H. Psychological antecedents of institution-based consumer trust in e-retailing. Inf. Manag. 2004, 42, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Henseler, J.; Dijkstra, T.K.; Sarstedt, M.; Ringle, C.M.; Diamantopoulos, A.; Straub, D.W.; Ketchen, D.J.; Hair, J.F.; Hult, G.T.M.; Calantone, R.J. Common Beliefs and Reality about Partial Least Squares: Comments on Rönkkö & Evermann (2013). Organ. Res. Methods 2014, 17, 182–209. [Google Scholar] [CrossRef] [Green Version]
- Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, R.; Hair, J.F. Partial Least Squares Structural Equation Modeling (PLS-SEM): A Useful Tool for Family Business Researchers. J. Fam. Bus. Strategy 2014, 5, 105–115. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Pieper, T.M.; Ringle, C.M. Applications of Partial Least Squares Path Modeling in Management Journals: A Review of Past Practices and Recommendations for Future Applications. Long Range Plan. 2012, 45, 320–340. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M.; Straub, D.W. Editor’s comments: A critical look at the use of PLS-SEM in MIS quarterly. MIS Q. 2012, 36, iii–xiv. [Google Scholar] [CrossRef] [Green Version]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 2000, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Siponen, M.; Vance, A. Neutralization: New insights into the problem of employee information systems security policy violations. MIS Q. 2010, 34, 487–502. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS: Bönningstedt, Germany, 2015. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Thiele, K.O. Mirror, Mirror on the Wall: A Comparative Evaluation of Composite-based Structural Equation Modeling Methods. J. Acad. Mark. Sci. 2017, 45, 616–632. [Google Scholar] [CrossRef]
- Becker, J.M.; Klein, K.; Wetzels, M. Hierarchical Latent Variable Models in PLS-SEM: Guidelines for Using Reflective-Formative Type Models. Long Range Plan. 2012, 45, 359–394. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Winklhofer, H.M. Index Construction with Formative Indicators: An Alternative to Scale Development. J. Mark. Res. 2001, 38, 269–277. [Google Scholar] [CrossRef]
- Pavlou, P.A.; El Sawy, O.A. From IT leveraging competence to competitive advantage in turbulent environments: The case of new product development. Inf. Syst. Res. 2006, 17, 198–227. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-based Structural Equation Modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.; Sarstedt, M.; Gudergan, S.P.; Ringle, C.M. Advanced Issues in Partial Least Squares Structural Equation Modeling; SAGE Publications, Incorporated: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Torkzadeh, G.; Dhillon, G. Measuring Factors that Influence the Success of Internet Commerce. Inf. Syst. Res. 2002, 13, 187–204. [Google Scholar] [CrossRef]
- Nadeem, W.; Juntunen, M.; Shirazi, F.; Hajli, N. Consumers’ value co-creation in sharing economy: The role of social support, consumers’ ethical perceptions and relationship quality. Technol. Forecast. Soc. Chang. 2020, 151, 119786. [Google Scholar] [CrossRef]
- Chun, J.W.; Lee, M.J. When does individuals’ willingness to speak out increase on social media? Perceived social support and perceived power/control. Comput. Hum. Behav. 2017, 74, 120–129. [Google Scholar] [CrossRef]
- Paul, J.; Bhukya, R. Forty-five years of International Journal of Consumer Studies: A bibliometric review and directions for future research. Int. J. Consum. Stud. 2021, 45, 937–963. [Google Scholar] [CrossRef]
- Donthu, N.; Gustafsson, A. Effects of COVID-19 on business and research. J. Bus. Res. 2020, 117, 284–289. [Google Scholar] [CrossRef]
- Das, G.; Jain, S.P.; Maheswaran, D.; Slotegraaf, R.J.; Srinivasan, R. Pandemics and marketing: Insights, impacts, and research opportunities. J. Acad. Mark. Sci. 2021, 49, 835–854. [Google Scholar] [CrossRef]
- Grashuis, J.; Skevas, T.; Segovia, M.S. Grocery Shopping Preferences during the COVID-19 Pandemic. Sustainability 2020, 12, 5369. [Google Scholar] [CrossRef]
Variable | Frequency | Percent |
---|---|---|
Gender | ||
Female | 218 | 62.6 |
Male | 129 | 37.1 |
Prefer not to say | 1 | 0.30 |
Missing | 1 | 0.30 |
Age Group | ||
18–24 | 19 | 5.5 |
25–35 | 89 | 25.6 |
36–45 | 110 | 31.6 |
46–64 | 117 | 33.6 |
Over 64 | 13 | 3.7 |
Missing | 1 | 0.3 |
Level of Education | ||
High School | 22 | 6.3 |
Collage | 94 | 27.0 |
Undergraduate | 137 | 39.4 |
Postgraduate | 79 | 22.7 |
PhD | 14 | 4.0 |
Other | 2 | 0.60 |
Missing | 1 | 0.3 |
Level of Income | ||
Less than £10,000 | 10 | 2.9 |
£10,000–£19,999 | 42 | 12.1 |
$20,000–£29,999 | 64 | 18.4 |
£30,000–£39,999 | 71 | 20.4 |
£40,000–£49,999 | 47 | 13.5 |
£50,000–£59,999 | 22 | 6.3 |
£60,000–£69,000 | 26 | 7.4 |
£70,000–£79,999 | 13 | 3.7 |
£80,000–£89,000 | 12 | 3.4 |
£90,000–£99,000 | 8 | 2.3 |
£100,000–£149,999 | 12 | 3.4 |
More than £150,000 | 5 | 1.4 |
Prefer not to answer | 16 | 4.6 |
Frequency of use of social commerce platform | ||
Daily | 55 | 15.8 |
Weekly | 150 | 43.0 |
Monthly | 121 | 34.7 |
Once in 6 months | 17 | 4.9 |
Once in a year | 2 | 0.60 |
Other | 4 | 1.1 |
Big Five Personality Traits | ||
Agreeableness | 68 | 19.5 |
Conscientiousness | 71 | 20.3 |
Extraversion | 70 | 20.2 |
Openness to Experience | 68 | 19.5 |
Neuroticism | 72 | 20.6 |
Constructs and Indictors | Item Loading | CR | AVE |
---|---|---|---|
Emotional Support | 0.90 | 0.70 | |
SE1: Whenever I have faced difficulties, some people on social commerce platforms are on my side. | 0.76 | ||
SE2: Whenever I have faced difficulties, some people on social commerce platforms comforted and encouraged me. | 0.89 | ||
SE3: Whenever I have faced difficulties, some people on social commerce platforms listened to me talking about my private feelings. | 0.83 | ||
SE4: Whenever I have faced difficulties, some people on social commerce platforms expressed interest and concern in my well-being. | 0.86 | ||
Informational Support | 0.93 | 0.83 | |
SI1: Whenever I have been in need of help, some people on social commerce platforms have been offering me suggestions. | 0.90 | ||
SI2: Whenever I have encountered a problem, some people on social commerce platforms would give information to help me overcome the problem | 0.91 | ||
SI3: Whenever I have faced difficulties, some people on social commerce platforms would help me discover the cause and provide me with suggestions | 0.91 | ||
Convenience | 0.92 | 0.86 | |
CV3: I value the ability to use social commerce platforms from the comfort of home. | 0.93 | ||
CV4: I like the ability to use social commerce platforms without leaving home. | 0.92 | ||
Positive Mood | 0.90 | 0.75 | |
PM1: I feel happy after shopping from social commerce platforms | 0.86 | ||
PM2: I have a warm feeling after shopping from social commerce platforms | 0.90 | ||
PM3: I feel valued after shopping from social commerce platforms | 0.84 | ||
Negative Mood | 0.95 | 086 | |
NM1: I feel angry after shopping from social commerce platforms | 0.92 | ||
NM2: I am in a bad mood after shopping from social commerce platforms | 0.95 | ||
NM3: I feel upset after shopping from social commerce platforms | 0.91 | ||
Purchase Intention | 0.93 | 0.70 | |
PI1: The likelihood of purchasing a product featured on social commerce platforms | 0.85 | ||
PI2: If I were going to buy a featured product, I would consider buying it from social commerce platforms | 0.87 | ||
PI3: I would consider buying a product featured on social commerce platforms | 0.87 | ||
PI4: The probability that I would consider buying a product from social commerce platforms | 0.84 | ||
PI5: My willingness to buy a product featured on social commerce platforms is | 0.76 |
Constructs | Social Support | Convenience | Positive Mood | Negative Mood | Purchase Intention |
---|---|---|---|---|---|
Social Support | 0.81 | ||||
Convenience | −0.05 (0.10) | 0.93 | |||
Positive Mood | 0.37 (0.29) | 0.25 (0.29) | 0.87 | ||
Negative Mood | −0.01 (0.04) | −0.25 (0.28) | −0.30 (0.34) | 0.93 | |
Purchase Intention | 0.07 (0.12) | 0.42 (0.49) | 0.54 (0.62) | −0.35 (0.04) | 0.84 |
Path | Complete Data | Agreeableness | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VIF Value | Path Coeff | 95% BC-CI | t- Value | p- Value | f- Square | Hypothesis Outcome | VIF Value | Path Coeff | 95% BC−CI | t- Value | p- Value | f- Square | Hypothesis Outcome | |
SS > PI | 1.20 | −0.09 | [−0.16:−0.02] | 2.05 | 0.02 | 0.01 | Rejected | 1.15 | −0.05 | [−0.15:0.06] | 0.72 | 0.24 | 0.00 | Rejected |
CV > PI | 1.13 | 0.27 | [0.18:0.36] | 4.73 | 0.00 | 0.11 | Accepted | 1.09 | 0.22 | [0.11:0.34] | 3.23 | 0.00 | 0.08 | Accepted |
PM > PI | 1.37 | 0.46 | [0.37:0.54] | 9.11 | 0.00 | 0.25 | Accepted | 1.25 | 0.47 | [0.36:0.57] | 7.22 | 0.00 | 0.27 | Accepted |
NM > PI | 1.15 | −0.15 | [−0.24:−0.07] | 2.88 | 0.00 | 0.03 | Rejected | 1.17 | −0.12 | [−0.25:0.00] | 1.60 | 0.05 | 0.02 | Rejected |
PI R2: 0.40; PI Q2: 0.27; PI Q2 effect size: 0.38 | PI R2: 0.35; PI Q2: 0.22; PI Q2 effect size: 0.30 | |||||||||||||
Path | Conscientiousness | Extraversion | ||||||||||||
VIF Value | Path Coeff | 95% BC-CI | t- Value | p- Value | f- Square | Hypothesis Outcome | VIF Value | Path Coeff | 95% BC-CI | t- Value | p- Value | f- Square | Hypothesis Outcome | |
SS > PI | 1.16 | −0.08 | [−0.18:0.02] | 1.37 | 0.08 | 0.00 | Rejected | 1.44 | −0.01 | [−0.16:0.14] | 0.17 | 0.43 | 0.00 | Rejected |
CV > PI | 1.08 | 0.25 | [0.14:0.35] | 3.74 | 0.00 | 0.10 | Accepted | 1.35 | 0.16 | [−0.01:0.33] | 1.50 | 0.07 | 0.05 | Accepted |
PM > PI | 1.30 | 0.48 | [0.37:0.58] | 7.65 | 0.00 | 0.27 | Accepted | 1.74 | 0.54 | [0.31:0.72] | 4.41 | 0.00 | 0.25 | Accepted |
NM > PI | 1.12 | −0.11 | [−0.20:−0.02] | 2.00 | 0.02 | 0.02 | Rejected | 1.50 | −0.18 | [−0.34:−0.01] | 1.74 | 0.04 | 0.05 | Rejected |
PI R2: 0.38; PI Q2: 0.25; PI Q2 effect size: 0.34 | PI R2: 0.49; PI Q2: 0.34; PI Q2 effect size: 0.40 | |||||||||||||
Path | Neuroticism | Openness to Experience | ||||||||||||
VIF Value | Path Coeff | 95% BC-CI | t- Value | p- Value | f- Square | Hypothesis Outcome | VIF Value | Path Coeff | 95% BC-CI | t- Value | p- Value | f- Square | Hypothesis Outcome | |
SS > PI | 1.26 | −0.11 | [−0.22:0.03] | 1.35 | 0.09 | 0.00 | Rejected | 1.22 | −0.05 | [−0.15:0.07] | 0.68 | 0.25 | 0.02 | Rejected |
CV > PI | 1.23 | 0.38 | [0.15:0.59] | 2.77 | 0.00 | 0.21 | Accepted | 1.14 | 0.23 | [0.12:0.34] | 3.41 | 0.00 | 0.09 | Accepted |
PM > PI | 1.38 | 0.44 | [0.30:0.59] | 4.97 | 0.00 | 0.25 | Accepted | 1.44 | 0.51 | [0.38:0.61] | 7.22 | 0.00 | 0.29 | Accepted |
NM > PI | 1.21 | −0.13 | [−0.32:0.03] | 1.24 | 0.11 | 0.04 | Rejected | 1.24 | −0.13 | [−0.25:−0.01] | 1.82 | 0.03 | 0.03 | Rejected |
PI R2: 0.49; PI Q2: 0.30; PI Q2 effect size: 0.39 | PI R2: 0.44; PI Q2: 0.29; PI Q2 effect size: 0.41 |
Path | Female | ||||||
---|---|---|---|---|---|---|---|
VIF Value | Path Coeff | 95% BC-CI | t-Value | p-Value | f-Square | Hypothesis Outcome | |
SS > PI | 1.17 | −0.13 | [−0.23:−0.06] | 2.82 | 0.00 | 0.03 | Rejected |
CV > PI | 1.17 | 0.26 | [0.16:0.36] | 4.30 | 0.00 | 0.10 | Accepted |
PM > PI | 1.40 | 0.48 | [0.38:0.57] | 8.03 | 0.00 | 0.28 | Accepted |
NM > PI | 1.23 | −0.11 | [−0.23:−0.06] | 1.88 | 0.03 | 0.02 | Rejected |
PI R2: 0.42; PI Q2: 0.27; PI Q2 effect size: 0.39 | |||||||
Path | Male | ||||||
VIF Value | Path Coeff | 95% BC-CI | t-Value | p-Value | f-Square | Hypothesis Outcome | |
SS > PI | 1.30 | −0.03 | [−0.13:−0.09] | 0.45 | 0.33 | 0.03 | Rejected |
CV > PI | 1.09 | 0.28 | [0.12:0.45] | 2.84 | 0.00 | 0.13 | Accepted |
PM > PI | 1.38 | 0.43 | [0.28:0.36] | 4.98 | 0.01 | 0.28 | Accepted |
NM > PI | 1.11 | −0.23 | [−0.37:−0.08] | 2.54 | 0.01 | 0.08 | Rejected |
PI R2: 0.42; PI Q2: 0.29; PI Q2 effect size: 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazi, S.; Haddad, H.; Al-Amad, A.H.; Rees, D.; Hajli, N. Investigating the Impact of Situational Influences and Social Support on Social Commerce during the COVID-19 Pandemic. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 104-121. https://doi.org/10.3390/jtaer17010006
Bazi S, Haddad H, Al-Amad AH, Rees D, Hajli N. Investigating the Impact of Situational Influences and Social Support on Social Commerce during the COVID-19 Pandemic. Journal of Theoretical and Applied Electronic Commerce Research. 2022; 17(1):104-121. https://doi.org/10.3390/jtaer17010006
Chicago/Turabian StyleBazi, Saleh, Hadeel Haddad, Amjad H. Al-Amad, Daniel Rees, and Nick Hajli. 2022. "Investigating the Impact of Situational Influences and Social Support on Social Commerce during the COVID-19 Pandemic" Journal of Theoretical and Applied Electronic Commerce Research 17, no. 1: 104-121. https://doi.org/10.3390/jtaer17010006
APA StyleBazi, S., Haddad, H., Al-Amad, A. H., Rees, D., & Hajli, N. (2022). Investigating the Impact of Situational Influences and Social Support on Social Commerce during the COVID-19 Pandemic. Journal of Theoretical and Applied Electronic Commerce Research, 17(1), 104-121. https://doi.org/10.3390/jtaer17010006