Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 22, Issue 8 (August 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-119
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Recent Advances in Plant Phenolics
Molecules 2017, 22(8), 1249; doi:10.3390/molecules22081249
Received: 24 July 2017 / Accepted: 24 July 2017 / Published: 26 July 2017
PDF Full-text (198 KB) | HTML Full-text | XML Full-text
Abstract
The scientific interest in plant phenolics as chemopreventive and therapeutic agents against chronic and degenerative diseases has been increasing since the late 1990s, when the French paradox was associated with the high intake of phenolics present in red wine [1]. [...]
Full article
(This article belongs to the Special Issue Recent Advances in Plant Phenolics)

Research

Jump to: Editorial, Review

Open AccessArticle A Metabolomics-Guided Exploration of the Phytochemical Constituents of Vernonia fastigiata with the Aid of Pressurized Hot Water Extraction and Liquid Chromatography-Mass Spectrometry
Molecules 2017, 22(8), 1200; doi:10.3390/molecules22081200
Received: 27 June 2017 / Revised: 10 July 2017 / Accepted: 11 July 2017 / Published: 27 July 2017
PDF Full-text (2387 KB) | HTML Full-text | XML Full-text
Abstract
Vernonia fastigiata is a multi-purpose nutraceutical plant with interesting biological properties. However, very little is known about its phytochemical composition and, thus the need for its phytochemical characterization. In the current study, an environmentally friendly method, pressurized hot water extraction (PHWE), was used
[...] Read more.
Vernonia fastigiata is a multi-purpose nutraceutical plant with interesting biological properties. However, very little is known about its phytochemical composition and, thus the need for its phytochemical characterization. In the current study, an environmentally friendly method, pressurized hot water extraction (PHWE), was used to extract metabolites from the leaves of V. fastigiata at various temperatures (50 °C, 100 °C, 150 °C and 200 °C). Ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-qTOF-MS) analysis in combination with chemometric methods, particularly principal component analysis (PCA) and liquid/gas chromatography mass spectrometry (XCMS) cloud plots, were used to descriptively visualize the data and identify significant metabolites extracted at various temperatures. A total of 25 different metabolites, including hydroxycinnamic acid derivatives, clovamide, deoxy-clovamide and flavonoids, were noted for the first time in this plant. Overall, an increase in extraction temperature resulted in an increase in metabolite extraction during PHWE. This study is the first scientific report on the phytochemical composition of V. fastigiata, providing insight into the components of the chemo-diversity of this important plant. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Tetrabutylammonium Iodide–Promoted Thiolation of Oxindoles Using Sulfonyl Chlorides as Sulfenylation Reagents
Molecules 2017, 22(8), 1208; doi:10.3390/molecules22081208
Received: 11 July 2017 / Revised: 26 July 2017 / Accepted: 28 July 2017 / Published: 1 August 2017
PDF Full-text (1707 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
3-Sulfanyloxindoles were synthesised by triphenylphosphine-mediated transition-metal-free thiolation of oxindoles using sulfonyl chlorides as sulfenylation reagents. The above reaction was promoted by iodide anions, which was ascribed to the in situ conversion of sulfenyl chlorides into the more reactive sulfenyl iodides. Moreover, the thiolation
[...] Read more.
3-Sulfanyloxindoles were synthesised by triphenylphosphine-mediated transition-metal-free thiolation of oxindoles using sulfonyl chlorides as sulfenylation reagents. The above reaction was promoted by iodide anions, which was ascribed to the in situ conversion of sulfenyl chlorides into the more reactive sulfenyl iodides. Moreover, the thiolation of 3-aryloxindoles was facilitated by bases. The use of a transition-metal-free protocol, readily available reagents, and mild reaction conditions make this protocol more practical for preparing 3-sulfanyloxindoles than traditional methods. Full article
(This article belongs to the collection Heterocyclic Compounds)
Figures

Open AccessArticle Structure and Catalysis of Fe(III) and Cu(II) Microperoxidase-11 Interacting with the Positively Charged Interfaces of Lipids
Molecules 2017, 22(8), 1212; doi:10.3390/molecules22081212
Received: 6 May 2017 / Revised: 20 June 2017 / Accepted: 14 July 2017 / Published: 26 July 2017
PDF Full-text (8778 KB) | HTML Full-text | XML Full-text
Abstract
Numerous applications have been described for microperoxidases (MPs) such as in photoreceptors, sensing, drugs, and hydrogen evolution. The last application was obtained by replacing Fe(III), the native central metal, by cobalt ion and inspired part of the present study. Here, the Fe(III) of
[...] Read more.
Numerous applications have been described for microperoxidases (MPs) such as in photoreceptors, sensing, drugs, and hydrogen evolution. The last application was obtained by replacing Fe(III), the native central metal, by cobalt ion and inspired part of the present study. Here, the Fe(III) of MP-11 was replaced by Cu(II) that is also a stable redox state in aerated medium, and the structure and activity of both MPs were modulated by the interaction with the positively charged interfaces of lipids. Comparative spectroscopic characterization of Fe(III) and Cu(II)MP-11 in the studied media demonstrated the presence of high and low spin species with axial distortion. The association of the Fe(III)MP-11 with CTAB and Cu(II)MP-11 with DODAB affected the colloidal stability of the surfactants that was recovered by heating. This result is consistent with hydrophobic interactions of MPs with DODAB vesicles and CTAB micelles. The hydrophobic interactions decreased the heme accessibility to substrates and the Fe(III) MP-11catalytic efficiency. Cu(II)MP-11 challenged by peroxides exhibited a cyclic Cu(II)/Cu(I) interconversion mechanism that is suggestive of a mimetic Cu/ZnSOD (superoxide dismutase) activity against peroxides. Hydrogen peroxide-activated Cu(II)MP-11 converted Amplex Red® to dihydroresofurin. This study opens more possibilities for technological applications of MPs. Full article
(This article belongs to the Special Issue Metallopeptides)
Figures

Open AccessArticle Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70) Function
Molecules 2017, 22(8), 1224; doi:10.3390/molecules22081224
Received: 19 June 2017 / Revised: 17 July 2017 / Accepted: 18 July 2017 / Published: 28 July 2017
PDF Full-text (1106 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of
[...] Read more.
Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70) function. Heat shock protein 70 (Hsp70) are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function. Full article
Figures

Open AccessArticle Enhanced Uptake of Fe3O4 Nanoparticles by Intestinal Epithelial Cells in a State of Inflammation
Molecules 2017, 22(8), 1240; doi:10.3390/molecules22081240
Received: 5 June 2017 / Revised: 18 July 2017 / Accepted: 18 July 2017 / Published: 27 July 2017
PDF Full-text (5654 KB) | HTML Full-text | XML Full-text
Abstract
Fe3O4 nanoparticles (Fe3O4 NPs) have been used for medical and drug applications, although the mechanisms of cellular uptake and transport need to be further evaluated under inflammatory conditions. In the present study, we investigated the uptake of
[...] Read more.
Fe3O4 nanoparticles (Fe3O4 NPs) have been used for medical and drug applications, although the mechanisms of cellular uptake and transport need to be further evaluated under inflammatory conditions. In the present study, we investigated the uptake of Fe3O4 NPs (20, 50, 100, and 200 nm) by intestinal epithelial cells under inflammatory conditions via the light scattering of flow cytometry and inductively coupled plasma mass spectrometry (ICP-MS) techniques. The results of the correlation analysis indicated that the uptake ratios of Fe3O4 NPs by intestinal epithelial cells under inflammatory conditions were higher than those under the control conditions. The transportation ratios of NPs by inflammatory Caco-2 cells increased almost 0.8–1.2 fold compared to the control. The internalization of the Fe3O4 NPs in Caco-2 cells was mediated by clathrin-related routes in both the control and an interleukin-1β (IL-1β)-induced inflammatory condition. The level of mRNA of clathrin expressed in Caco-2 cells that were stimulated by IL-1β was almost three times more than the control. Consistently with the mRNA expression, the level of protein in the clathrin was upregulated. Additionally, it was verified for the first time that the expression of clathrin was upregulated in IL-1β-stimulated Caco-2 cells. Collectively, these results provided a further potential understanding about the mechanism of Fe3O4 NPs’ uptake by intestinal epithelial cells under inflammatory conditions. Full article
Figures

Figure 1

Open AccessArticle Systems Biology Approach to Bioremediation of Nitroaromatics: Constraint-Based Analysis of 2,4,6-Trinitrotoluene Biotransformation by Escherichia coli
Molecules 2017, 22(8), 1242; doi:10.3390/molecules22081242
Received: 6 June 2017 / Revised: 22 June 2017 / Accepted: 23 June 2017 / Published: 14 August 2017
PDF Full-text (6527 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Microbial remediation of nitroaromatic compounds (NACs) is a promising environmentally friendly and cost-effective approach to the removal of these life-threating agents. Escherichia coli (E. coli) has shown remarkable capability for the biotransformation of 2,4,6-trinitro-toluene (TNT). Efforts to develop E. coli as
[...] Read more.
Microbial remediation of nitroaromatic compounds (NACs) is a promising environmentally friendly and cost-effective approach to the removal of these life-threating agents. Escherichia coli (E. coli) has shown remarkable capability for the biotransformation of 2,4,6-trinitro-toluene (TNT). Efforts to develop E. coli as an efficient TNT degrading biocatalyst will benefit from holistic flux-level description of interactions between multiple TNT transforming pathways operating in the strain. To gain such an insight, we extended the genome-scale constraint-based model of E. coli to account for a curated version of major TNT transformation pathways known or evidently hypothesized to be active in E. coli in present of TNT. Using constraint-based analysis (CBA) methods, we then performed several series of in silico experiments to elucidate the contribution of these pathways individually or in combination to the E. coli TNT transformation capacity. Results of our analyses were validated by replicating several experimentally observed TNT degradation phenotypes in E. coli cultures. We further used the extended model to explore the influence of process parameters, including aeration regime, TNT concentration, cell density, and carbon source on TNT degradation efficiency. We also conducted an in silico metabolic engineering study to design a series of E. coli mutants capable of degrading TNT at higher yield compared with the wild-type strain. Our study, therefore, extends the application of CBA to bioremediation of nitroaromatics and demonstrates the usefulness of this approach to inform bioremediation research. Full article
Figures

Figure 1

Open AccessArticle Structural Characterization of Cholestane Rhamnosides from Ornithogalum saundersiae Bulbs and Their Cytotoxic Activity against Cultured Tumor Cells
Molecules 2017, 22(8), 1243; doi:10.3390/molecules22081243
Received: 30 June 2017 / Revised: 14 July 2017 / Accepted: 17 July 2017 / Published: 25 July 2017
PDF Full-text (4206 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Previous phytochemical studies of the bulbs of Ornithogalum saundersiae, an ornamental perennial plant native to South Africa, resulted in the isolation of 29 new cholestane glycosides, some of which were structurally unique and showed potent cytotoxic activity against cultured tumor cell lines.
[...] Read more.
Previous phytochemical studies of the bulbs of Ornithogalum saundersiae, an ornamental perennial plant native to South Africa, resulted in the isolation of 29 new cholestane glycosides, some of which were structurally unique and showed potent cytotoxic activity against cultured tumor cell lines. Therefore, we aimed to perform further phytochemical examinations of methanolic extracts obtained from Ornithogalum saundersiae bulbs, isolating 12 new cholestane rhamnosides (112) and seven known compounds (1319). The structures of the new compounds (112) were identified via NMR-based structural characterization methods, and through a sequence of chemical transformations followed by spectroscopic and chromatographic analysis. The cytotoxic activity of the isolated compounds (119) and the derivatives (1a and 6a) against HL-60 human promyelocytic leukemia cells and A549 human lung adenocarcinoma cells was evaluated. Compounds 1012, 16, and 17 showed cytotoxicity against both HL-60 and A549 cells. Compound 11 showed potent cytotoxicity with an IC50 value of 0.16 µM against HL-60 cells and induced apoptotic cell death via a mitochondrion-independent pathway. Full article
Figures

Figure 1

Open AccessArticle Diarylethenes Display In Vitro Anti-TB Activity and Are Efficient Hits Targeting the Mycobacterium tuberculosis HU Protein
Molecules 2017, 22(8), 1245; doi:10.3390/molecules22081245
Received: 9 July 2017 / Accepted: 22 July 2017 / Published: 25 July 2017
PDF Full-text (1833 KB) | HTML Full-text | XML Full-text
Abstract
Tuberculosis continues to be a great source of concern in global health because of the large reservoir of humans infected with the bacilli and the appearance of clinical isolates resistant to a wide array of anti-tuberculosis drugs. New drugs with novel mechanisms of
[...] Read more.
Tuberculosis continues to be a great source of concern in global health because of the large reservoir of humans infected with the bacilli and the appearance of clinical isolates resistant to a wide array of anti-tuberculosis drugs. New drugs with novel mechanisms of action on new targets are urgently required to reduce global tuberculosis burden. Mycobacterium tuberculosis nucleoid associated protein (NAP) HU has been shown to be druggable and essential for the organism’s survival. In this study, four diarylethenes were synthesized using a one-pot decarboxylated Heck-coupling of coumaric acids with iodoanisoles. The prepared compounds 14 were tested for their in vitro growth inhibition of M. tuberculosis H37Rv using the spot culture growth inhibition assay, displaying minimum inhibitory concentrations between 9 and 22 µM. Their cytotoxicity against BHK-21 cell line showed half inhibition at concentrations between 98 and 729 µM. The most selective hit (SI = 81), demonstrated inhibition of M. tuberculosis HU protein involved in maintaining bacterial genome architecture. Full article
(This article belongs to the Special Issue Emerging Drug Discovery Approaches against Infectious Diseases)
Figures

Open AccessArticle Effects of P-Glycoprotein on the Transport of DL0410, a Potential Multifunctional Anti-Alzheimer Agent
Molecules 2017, 22(8), 1246; doi:10.3390/molecules22081246
Received: 5 July 2017 / Revised: 17 July 2017 / Accepted: 23 July 2017 / Published: 25 July 2017
PDF Full-text (5630 KB) | HTML Full-text | XML Full-text
Abstract
In our study, we attempted to investigate the influences of P-glycoprotein (P-gp) on DL0410, a novel synthetic molecule for Alzheimer’s disease (AD) treatment, for intestinal absorption and blood-brain barrier permeability in vitro and related binding mechanisms in silico. Caco-2, MDCK, and MDCK-MDR1 cells
[...] Read more.
In our study, we attempted to investigate the influences of P-glycoprotein (P-gp) on DL0410, a novel synthetic molecule for Alzheimer’s disease (AD) treatment, for intestinal absorption and blood-brain barrier permeability in vitro and related binding mechanisms in silico. Caco-2, MDCK, and MDCK-MDR1 cells were utilized for transport studies, and homology modelling of human P-gp was built for further docking study to uncover the binding mode of DL0410. The results showed that the apparent permeability (Papp) value of DL0410 was approximately 1 × 10−6 cm/s, indicating the low permeability of DL0410. With the presence of verapamil, the directional transport of DL0410 disappeared in Caco-2 and MDCK-MDR1 cells, suggesting that DL0410 should be a substrate of P-gp, which was also confirmed by P-gp ATPase assay. In addition, DL0410 could competitively inhibit the transport of Rho123, a P-gp known substrate. According to molecular docking, we also found that DL0410 could bind to the drug binding pocket (DBP), but not the nucleotide binding domain (NBD). In conclusion, DL0410 was a substrate as well as a competitive inhibitor of P-gp, and P-gp had a remarkable impact on the intestine and brain permeability of DL0410, which is of significance for drug research and development. Full article
(This article belongs to the Special Issue Neuroprotective Agents)
Figures

Open AccessArticle Multifunctional Cinnamic Acid Derivatives
Molecules 2017, 22(8), 1247; doi:10.3390/molecules22081247
Received: 9 June 2017 / Revised: 24 July 2017 / Accepted: 24 July 2017 / Published: 25 July 2017
PDF Full-text (2049 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino) ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity.
[...] Read more.
Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino) ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX) inhibition (IC50 = 6 μΜ) and antiproteolytic activity (IC50 = 0.425 μΜ). The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC50 = 0.315 μΜ) and good LOX inhibitory activity (IC50 = 66 μΜ). Compounds 3a and 3b, derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro. Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study. Full article
(This article belongs to the Special Issue Polypharmacology and Multitarget Drug Discovery)
Figures

Open AccessArticle Rapid Mechanistic Evaluation and Parameter Estimation of Putative Inhibitors in a Single-Step Progress-Curve Analysis: The Case of Horse Butyrylcholinesterase
Molecules 2017, 22(8), 1248; doi:10.3390/molecules22081248
Received: 30 June 2017 / Accepted: 21 July 2017 / Published: 26 July 2017
PDF Full-text (776 KB) | HTML Full-text | XML Full-text
Abstract
Highly efficient and rapid lead compound evaluation for estimation of inhibition parameters and type of inhibition is proposed. This is based on a single progress-curve measurement in the presence of each candidate compound, followed by the simultaneous analysis of all of these curves
[...] Read more.
Highly efficient and rapid lead compound evaluation for estimation of inhibition parameters and type of inhibition is proposed. This is based on a single progress-curve measurement in the presence of each candidate compound, followed by the simultaneous analysis of all of these curves using the ENZO enzyme kinetics suite, which can be implemented as a web application. In the first step, all of the candidate ligands are tested as competitive inhibitors. Where the theoretical curves do not correspond to the experimental data, minimal additional measurements are added, with subsequent processing according to modified reaction mechanisms. Full article
Figures

Figure 1

Open AccessArticle A Novel Fluoroimmunoassay for Detecting Ruscogenin with Monoclonal Antibodies Conjugated with CdSe/ZnS Quantum Dots
Molecules 2017, 22(8), 1250; doi:10.3390/molecules22081250
Received: 27 June 2017 / Revised: 20 July 2017 / Accepted: 23 July 2017 / Published: 26 July 2017
PDF Full-text (3056 KB) | HTML Full-text | XML Full-text
Abstract
Ruscogenin (RUS) is a steroidal sapogenin found in Ruscus aculeatus and Ophiopogon japonicus with several pharmacological activities. In the work reported herein, a novel method termed competitive fluorescence-linked immunosorbent assay (cFLISA) based on monoclonal antibodies (mAbs) coupled with quantum dots (QDs) was developed
[...] Read more.
Ruscogenin (RUS) is a steroidal sapogenin found in Ruscus aculeatus and Ophiopogon japonicus with several pharmacological activities. In the work reported herein, a novel method termed competitive fluorescence-linked immunosorbent assay (cFLISA) based on monoclonal antibodies (mAbs) coupled with quantum dots (QDs) was developed for the quick and sensitive determination of RUS in biological samples. The mAbs against RUS were conjugated with CdSe/ZnS QDs by the crossing-linking reagents and an indirect cFLISA method was developed. There was a good linear relationship between inhibition efficiency and logarithm concentration of RUS which was varied from 0.1 to 1000 ng/mL. The IC50 and limit of detection (LOD) were 9.59 ng/mL and 0.016 ng/mL respectively, which much lower than the enzyme-linked immunosorbent assay (ELISA) method. The recoveries in plasma and tissues were ranged from 82.3% to 107.0% and the intra- and inter-day precision values were below 15%. The developed cFLISA has been successfully applied to the measurement of the concentrations of RUS in biological samples of rats, and showed great potential for the tissue distribution study of RUS. The cFLISA method may provide a valuable tool for the analysis of small molecules in biological samples and such an approach could be applied to other natural products. Full article
Figures

Open AccessArticle Synthesis of Compounds of the Pyrimidine Series Based on the Reactions of 3-Arylmethylidenefuran-2(3H)-ones with N,N-Binucleophilic Reagents
Molecules 2017, 22(8), 1251; doi:10.3390/molecules22081251
Received: 10 July 2017 / Revised: 25 July 2017 / Accepted: 25 July 2017 / Published: 28 July 2017
PDF Full-text (779 KB) | HTML Full-text | XML Full-text
Abstract
The arylmethylidene derivatives of furan-2(3H)-ones are important building blocks for the synthesis of various heterocyclic compounds containing pyrimidine and pyridazine structural fragments, analogues of nitrogen-containing bases of pyrimidine series. In order to continue the development of constructing of molecules containing pyridine
[...] Read more.
The arylmethylidene derivatives of furan-2(3H)-ones are important building blocks for the synthesis of various heterocyclic compounds containing pyrimidine and pyridazine structural fragments, analogues of nitrogen-containing bases of pyrimidine series. In order to continue the development of constructing of molecules containing pyridine and pyridazine fragments, this article is devoted to the synthesis of new biologically active compounds with these moieties. The introduction of a heterocyclic chromenone fragment changes the previously observed 5-R-3-arylmethylidenefuran-2(3H)-ones route of reaction with guanidine carbonate and leads to 3-[(2-amino-4-(2-hydroxyphenyl)pyrimidin-5-yl)methylene]-5-phenylfuran-2(3H)-ones (2ad). The structure of the reaction products depends on the nature of the aromatic substituent at the C-3 position of the furanone ring. The interaction of 5-aryl-3-arylmethylidenefuran-2(3H)-ones (1eh) with thiourea in the basic medium leads to the isolation of 5-(2-oxo-2-phenylethyl)-6-aryl-2-thioxotetrahydropyrimidine-4(1H)-ones (3ad), demonstrating pronounced plant-growth regulatory activity. Optimal conditions for all discussed processes were developed. Full article
(This article belongs to the Special Issue Nucleoside and Nucleotide Analogues)
Figures

Open AccessArticle A Lanosteryl Triterpene from Protorhus longifolia Improves Glucose Tolerance and Pancreatic Beta Cell Ultrastructure in Type 2 Diabetic Rats
Molecules 2017, 22(8), 1252; doi:10.3390/molecules22081252
Received: 21 June 2017 / Revised: 21 July 2017 / Accepted: 24 July 2017 / Published: 26 July 2017
PDF Full-text (2056 KB) | HTML Full-text | XML Full-text
Abstract
Type 2 diabetes remains one of the leading causes of death worldwide. Persistent hyperglycemia within a diabetic state is implicated in the generation of oxidative stress and aggravated inflammation that is responsible for accelerated modification of pancreatic beta cell structure. Here we investigated
[...] Read more.
Type 2 diabetes remains one of the leading causes of death worldwide. Persistent hyperglycemia within a diabetic state is implicated in the generation of oxidative stress and aggravated inflammation that is responsible for accelerated modification of pancreatic beta cell structure. Here we investigated whether a lanosteryl triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA-3), isolated from Protorhus longifolia can improve glucose tolerance and pancreatic beta cell ultrastructure by reducing oxidative stress and inflammation in high fat diet and streptozotocin-induced type 2 diabetes in rats. In addition to impaired glucose tolerance, the untreated diabetic rats showed increased fasting plasma glucose and C-peptide levels. These untreated diabetic rats further demonstrated raised cholesterol, interleukin-6 (IL-6), and lipid peroxidation levels as well as a destroyed beta cell ultrastructure. Treatment with RA-3 was as effective as metformin in improving glucose tolerance and antioxidant effect in the diabetic rats. Interestingly, RA-3 displayed a slightly more enhanced effect than metformin in reducing elevated IL-6 levels and in improving beta cell ultrastructure. Although the involved molecular mechanisms remain to be established, RA-3 demonstrates a strong potential to improve pancreatic beta cell ultrastructure by attenuating impaired glucose tolerance, reducing oxidative stress and inflammation. Full article
(This article belongs to the Special Issue Natural Products and Chronic Diseases)
Figures

Figure 1

Open AccessArticle Synthesis, Characterization and In Vitro Evaluation of a Novel Glycol Chitosan-EDTA Conjugate to Inhibit Aminopeptidase-Mediated Degradation of Thymopoietin Oligopeptides
Molecules 2017, 22(8), 1253; doi:10.3390/molecules22081253
Received: 21 June 2017 / Revised: 14 July 2017 / Accepted: 24 July 2017 / Published: 26 July 2017
PDF Full-text (3583 KB) | HTML Full-text | XML Full-text
Abstract
In this study, a novel conjugate consisting of glycol chitosan (GCS) and ethylene diamine tetraacetic acid (EDTA) was synthesized and characterized in terms of conjugation and heavy metal ion chelating capacity. Moreover, its potential application as a metalloenzyme inhibitor was evaluated with three
[...] Read more.
In this study, a novel conjugate consisting of glycol chitosan (GCS) and ethylene diamine tetraacetic acid (EDTA) was synthesized and characterized in terms of conjugation and heavy metal ion chelating capacity. Moreover, its potential application as a metalloenzyme inhibitor was evaluated with three thymopoietin oligopeptides in the presence of leucine aminopeptidase. The results from FTIR and NMR spectra revealed that the covalent attachment of EDTA to GCS was achieved by the formation of amide bonds between the carboxylic acid group of EDTA and amino groups of GCS. The conjugated EDTA lost part of its chelating capacity to cobalt ions compared with free EDTA as evidenced by the results of cobalt ion chelation-mediated fluorescence recovery of calcein. However, further investigation confirmed that GCS-EDTA at low concentrations significantly inhibited leucine aminopeptidase-mediated degradation of all thymopoietin oligopeptides. Full article
Figures

Figure 1

Open AccessArticle Evaluation of Novel Dual Acetyl- and Butyrylcholinesterase Inhibitors as Potential Anti-Alzheimer’s Disease Agents Using Pharmacophore, 3D-QSAR, and Molecular Docking Approaches
Molecules 2017, 22(8), 1254; doi:10.3390/molecules22081254
Received: 13 July 2017 / Revised: 24 July 2017 / Accepted: 25 July 2017 / Published: 26 July 2017
PDF Full-text (9628 KB) | HTML Full-text | XML Full-text
Abstract
DL0410, containing biphenyl and piperidine skeletons, was identified as an acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor through high-throughput screening assays, and further studies affirmed its efficacy and safety for Alzheimer’s disease treatment. In our study, a series of novel DL0410 derivatives were evaluated
[...] Read more.
DL0410, containing biphenyl and piperidine skeletons, was identified as an acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor through high-throughput screening assays, and further studies affirmed its efficacy and safety for Alzheimer’s disease treatment. In our study, a series of novel DL0410 derivatives were evaluated for inhibitory activities towards AChE and BuChE. Among these derivatives, compounds 6-1 and 7-6 showed stronger AChE and BuChE inhibitory activities than DL0410. Then, pharmacophore modeling and three-dimensional quantitative structure activity relationship (3D-QSAR) models were performed. The R2 of AChE and BuChE 3D-QSAR models for training set were found to be 0.925 and 0.883, while that of the test set were 0.850 and 0.881, respectively. Next, molecular docking methods were utilized to explore the putative binding modes. Compounds 6-1 and 7-6 could interact with the amino acid residues in the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE/BuChE, which was similar with DL0410. Kinetics studies also suggested that the three compounds were all mixed-types of inhibitors. In addition, compound 6-1 showed better absorption and blood brain barrier permeability. These studies provide better insight into the inhibitory behaviors of DL0410 derivatives, which is beneficial for rational design of AChE and BuChE inhibitors in the future. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Phenolic Compounds Contained in Little-known Wild Fruits as Antiadhesive Agents Against the Beverage-Spoiling Bacteria Asaia spp.
Molecules 2017, 22(8), 1256; doi:10.3390/molecules22081256
Received: 6 July 2017 / Accepted: 23 July 2017 / Published: 28 July 2017
PDF Full-text (4028 KB)
Abstract
The aim of the study was to evaluate antioxidant activity and total phenolic content of juice from three different types of fruits: elderberry (Sambucus nigra), lingonberry (Vaccinium vitis-idaea) and cornelian cherry (Cornus mas), and their action against
[...] Read more.
The aim of the study was to evaluate antioxidant activity and total phenolic content of juice from three different types of fruits: elderberry (Sambucus nigra), lingonberry (Vaccinium vitis-idaea) and cornelian cherry (Cornus mas), and their action against adhesion of bacterial strains of Asaia lannensis and Asaia bogorensis isolated from spoiled soft drinks. The antioxidant profiles were determined by total antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl, DPPH), and ferric-reducing antioxidant power (FRAP). Additionally, total polyphenol content (TPC) was investigated. Chemical compositions of juices were tested using the chromatographic techniques: high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS). Adhesion properties of Asaia spp. cells to various abiotic materials were evaluated by luminometry, plate count and fluorescence microscopy. Antioxidant activity of fruit juices expressed as inhibitory concentration (IC50) ranged from 0.042 ± 0.001 (cornelian cherry) to 0.021 ± 0.001 g/mL (elderberry). TPC ranged from 8.02 ± 0.027 (elderberry) to 2.33 ± 0.013 mg/mL (cornelian cherry). Cyanidin-3-sambubioside-5-glucoside, cyanidin-3-glucoside, and cyanidin-3-sambubioside were detected as the major anthocyanins and caffeic, cinnamic, gallic, protocatechuic, and p-coumaric acids as the major phenolic acids. A significant linear correlation was noted between TPC and antioxidant capacity. In the presence of fruit juices a significant decrease of bacterial adhesion from 74% (elderberry) to 67% (lingonberry) was observed. The high phenolic content indicated that these compounds may contribute to the reduction of Asaia spp. adhesion. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
Open AccessArticle Synthesis and Identification of Novel Berberine Derivatives as Potent Inhibitors against TNF-α-Induced NF-κB Activation
Molecules 2017, 22(8), 1257; doi:10.3390/molecules22081257
Received: 27 June 2017 / Revised: 24 July 2017 / Accepted: 25 July 2017 / Published: 27 July 2017
PDF Full-text (5407 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Twenty-three new berberine (BBR) analogues defined on substituents of ring D were synthesized and evaluated for their activity for suppression of tumor necrosis factor (TNF)-α-induced nuclear factor (NF)-κB activation. Structure–activity relationship (SAR) analysis indicated that suitable tertiary/quaternary carbon substitutions at the 9-position or
[...] Read more.
Twenty-three new berberine (BBR) analogues defined on substituents of ring D were synthesized and evaluated for their activity for suppression of tumor necrosis factor (TNF)-α-induced nuclear factor (NF)-κB activation. Structure–activity relationship (SAR) analysis indicated that suitable tertiary/quaternary carbon substitutions at the 9-position or rigid fragment at position 10 might be beneficial for enhancing their anti-inflammatory potency. Among them, compounds 2d, 2e, 2i and 2j exhibited satisfactory inhibitory potency against NF-κB activation, with an inhibitory rate of around 90% (5 μM), much better than BBR. A preliminary mechanism study revealed that all of them could inhibit TNF-α-induced NF-κB activation via impairing IκB kinase (IKK) phosphorylation as well as cytokines interleukin (IL)-6 and IL-8 induced by TNF-α. Therefore, the results provided powerful information on further structural modifications and development of BBR derivatives into a new class of anti-inflammatory candidates for the treatment of inflammatory diseases. Full article
(This article belongs to the Special Issue Anti-inflammatory Agents)
Figures

Open AccessArticle Study of the Interactions of Bovine Serum Albumin with the New Anti-Inflammatory Agent 4-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)-N′-[(4-ethoxy-phenyl)methylidene]benzohydrazide Using a Multi-Spectroscopic Approach and Molecular Docking
Molecules 2017, 22(8), 1258; doi:10.3390/molecules22081258
Received: 22 June 2017 / Revised: 15 July 2017 / Accepted: 26 July 2017 / Published: 27 July 2017
PDF Full-text (2853 KB) | HTML Full-text | XML Full-text
Abstract
The lipophilic derivative of thalidomide (4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N′-[(4-ethoxyphenyl)methylidene]benzohydrazide, 6P) was synthesized to enhance its characteristics and efficacy. Earlier studies have proved the immunomodulatory and anti-inflammatory effects of 6P. In this study the interaction between bovine serum albumin (BSA) and
[...] Read more.
The lipophilic derivative of thalidomide (4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N′-[(4-ethoxyphenyl)methylidene]benzohydrazide, 6P) was synthesized to enhance its characteristics and efficacy. Earlier studies have proved the immunomodulatory and anti-inflammatory effects of 6P. In this study the interaction between bovine serum albumin (BSA) and 6P was studied using a multi-spectroscopic approach which included UV spectrophotometry, spectrofluorimetry and three dimensional spectrofluorometric and molecular docking studies. Static quenching was involved in quenching the fluorescence of BSA by 6P, because a complex formation occurred between the 6P and BSA. The binding constant decreased with higher temperature and was in the range of 2.5 × 105–4.8 × 103 L mol−1 suggesting an unstable complex at higher temperatures. A single binding site was observed and the the site probe experiments showed site II (sub-domain IIIA) of BSA as the binding site for 6P. The negative values of ∆G0, ∆H0 and ∆S0 at (298/303/308 K) indicated spontaneous binding between 6P and BSA as well as the interaction was enthalpy driven and van der Waals forces and hydrogen bonding were involved in the interaction. The docking results and the results from the experimental studies are complimentary to each other and confirm that 6P binds at site II (sub-domain IIIA) of BSA. Full article
(This article belongs to the Special Issue Anti-inflammatory Agents)
Figures

Figure 1

Open AccessArticle Pharmacokinetic Study of Biotransformation Products from an Anxiolytic Fraction of Tilia americana
Molecules 2017, 22(8), 1260; doi:10.3390/molecules22081260
Received: 16 June 2017 / Revised: 20 July 2017 / Accepted: 21 July 2017 / Published: 27 July 2017
PDF Full-text (1398 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
An anxiolytic fraction of Tilia americana standardized in tiliroside, rutin, quercitrin, quercetin glucoside, and kaempferol was obtained. After oral administration of the fraction, the above-mentioned flavonoids were not detected in plasma over 24 h. However, meta and para hydroxyphenylacetic acid and dihydroxyphenylacetic acid
[...] Read more.
An anxiolytic fraction of Tilia americana standardized in tiliroside, rutin, quercitrin, quercetin glucoside, and kaempferol was obtained. After oral administration of the fraction, the above-mentioned flavonoids were not detected in plasma over 24 h. However, meta and para hydroxyphenylacetic acid and dihydroxyphenylacetic acid (m-HPAA, p-HPAA and DOPAC) were monitored. These are the biotransformation compounds of the aglycones of kaempferol and quercetin; these aglycones are products of the other flavonoids present in the anxiolytic fraction. The analytical methods (HPLC) for flavonoids and the related compounds (m-HPAA, p-HPAA and DOPAC) were validated, determining the parameters of accuracy, precision, specificity or selectivity, limit of detection, quantification range, and robustness. The pharmacokinetic assay was performed with ICR mice strains, which were given 200 mg/kg of the standardized active fraction. The results of validation of the analytical methods were obtained, allowing it to be established in a validated way that no flavonoids present in the anxiolytic fraction of T. americana were detected in plasma. However, detection and follow up was possible for the serum levels of m-HPAA, p-HPAA, and DOPAC. The three compounds follow a two-compartment model with very similar parameters between m-HPAA and p-HPAA, some being different from the ones characterized in the pharmacokinetics of DOPAC. Full article
Figures

Figure 1

Open AccessArticle Distinct Mechanisms of Biotic and Chemical Elicitors Enable Additive Elicitation of the Anticancer Phytoalexin Glyceollin I
Molecules 2017, 22(8), 1261; doi:10.3390/molecules22081261
Received: 16 June 2017 / Accepted: 25 July 2017 / Published: 27 July 2017
PDF Full-text (3438 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Phytoalexins are metabolites biosynthesized in plants in response to pathogen, environmental, and chemical stresses that often have potent bioactivities, rendering them promising for use as therapeutics or scaffolds for pharmaceutical development. Glyceollin I is an isoflavonoid phytoalexin from soybean that exhibits potent anticancer
[...] Read more.
Phytoalexins are metabolites biosynthesized in plants in response to pathogen, environmental, and chemical stresses that often have potent bioactivities, rendering them promising for use as therapeutics or scaffolds for pharmaceutical development. Glyceollin I is an isoflavonoid phytoalexin from soybean that exhibits potent anticancer activities and is not economical to synthesize. Here, we tested a range of source tissues from soybean, in addition to chemical and biotic elicitors, to understand how to enhance the bioproduction of glyceollin I. Combining the inorganic chemical silver nitrate (AgNO3) with the wall glucan elicitor (WGE) from the soybean pathogen Phytophthora sojae had an additive effect on the elicitation of soybean seeds, resulting in a yield of up to 745.1 µg gt−1 glyceollin I. The additive elicitation suggested that the biotic and chemical elicitors acted largely by separate mechanisms. WGE caused a major accumulation of phytoalexin gene transcripts, whereas AgNO3 inhibited and enhanced the degradation of glyceollin I and 6″-O-malonyldaidzin, respectively. Full article
Figures

Open AccessArticle Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics
Molecules 2017, 22(8), 1262; doi:10.3390/molecules22081262
Received: 22 June 2017 / Revised: 25 July 2017 / Accepted: 25 July 2017 / Published: 27 July 2017
PDF Full-text (3844 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chinese kale (Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars
[...] Read more.
Chinese kale (Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars and three different edible parts were evaluated, and amino acids, sugars, organic acids, glucosinolates and phenolic compounds were analysed simultaneously. We found that two cultivars, a purple-stem cultivar W1 and a yellow-flower cultivar Y1, had more health-promoting compounds than others. The multivariate statistical analysis results showed that gluconapin was the most important contributor for discriminating both cultivars and edible parts. The purple-stem cultivar W1 had higher levels of some phenolic acids and flavonoids than the green stem cultivars. Compared to stems and leaves, the inflorescences contained more amino acids, glucosinolates and most of the phenolic acids. Meanwhile, the stems had the least amounts of phenolic compounds among the organs tested. Metabolomics is a powerful approach for the comprehensive understanding of vegetable nutritional quality. The results provide the basis for future metabolomics-guided breeding and nutritional quality improvement. Full article
Figures

Figure 1

Open AccessArticle Screening Hepatotoxic Components in Euodia rutaecarpa by UHPLC-QTOF/MS Based on the Spectrum-Toxicity Relationship
Molecules 2017, 22(8), 1264; doi:10.3390/molecules22081264
Received: 24 June 2017 / Revised: 19 July 2017 / Accepted: 24 July 2017 / Published: 27 July 2017
PDF Full-text (5987 KB) | HTML Full-text | XML Full-text
Abstract
Euodia rutaecarpa is a common traditional Chinese medicine (TCM) in clinical practice, having the ability to suppress pain and cease coughing; however, with the increasing reports showing that it is toxic, particularly hepatotoxic, the concerns raised by what cause its toxicity is growing.
[...] Read more.
Euodia rutaecarpa is a common traditional Chinese medicine (TCM) in clinical practice, having the ability to suppress pain and cease coughing; however, with the increasing reports showing that it is toxic, particularly hepatotoxic, the concerns raised by what cause its toxicity is growing. In the current study, an analysis method based on the spectrum effect has been employed to screen the major hepatotoxic components in Euodia rutaecarpa so that the toxic material’s basis would be elucidated. A fingerprinting method of the Euodia rutaecarpa extracts (which were petroleum ether, chloroform, ethyl acetate, n-butanol, and water) using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF/MS) has been developed. Orthogonal partial least squares (OPLS) was used to establish the spectrum-toxicity relationship with the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in mice serum as evaluation indices for liver injury. The UHPLC-MS fingerprint was established and the OPLS analytical results suggested that coniferin, 1-methyl-2-undecyl-4(1H)-quinolone, 1-methyl-2-[(6Z,9Z,12E)-pentadeca triene]-4(1H)-quinolone, evocarpine, 1-methyl-2-[(Z)-7-tridecenyl]-4(1H)-quinolone, dihydroevocarpine, and 1-methyl-2-tetradecy-4-(1H)-quinolone probably associated with the hepatotoxicity of Euodia rutaecarpa. This paper offered considerable methods and insight for the fundamental research of the toxic material basis of similar toxic TCMs. Full article
Figures

Open AccessArticle Development of 2-Methoxyhuprine as Novel Lead for Alzheimer’s Disease Therapy
Molecules 2017, 22(8), 1265; doi:10.3390/molecules22081265
Received: 3 July 2017 / Revised: 21 July 2017 / Accepted: 22 July 2017 / Published: 28 July 2017
PDF Full-text (2402 KB) | HTML Full-text | XML Full-text
Abstract
Tacrine (THA), the first clinically effective acetylcholinesterase (AChE) inhibitor and the first approved drug for the treatment of Alzheimer’s disease (AD), was withdrawn from the market due to its side effects, particularly its hepatotoxicity. Nowadays, THA serves as a valuable scaffold for the
[...] Read more.
Tacrine (THA), the first clinically effective acetylcholinesterase (AChE) inhibitor and the first approved drug for the treatment of Alzheimer’s disease (AD), was withdrawn from the market due to its side effects, particularly its hepatotoxicity. Nowadays, THA serves as a valuable scaffold for the design of novel agents potentially applicable for AD treatment. One such compound, namely 7-methoxytacrine (7-MEOTA), exhibits an intriguing profile, having suppressed hepatotoxicity and concomitantly retaining AChE inhibition properties. Another interesting class of AChE inhibitors represents Huprines, designed by merging two fragments of the known AChE inhibitors—THA and (−)-huperzine A. Several members of this compound family are more potent human AChE inhibitors than the parent compounds. The most promising are so-called huprines X and Y. Here, we report the design, synthesis, biological evaluation, and in silico studies of 2-methoxyhuprine that amalgamates structural features of 7-MEOTA and huprine Y in one molecule. Full article
Figures

Figure 1

Open AccessArticle Chemical Synthesis of Sulfated Yeast (Saccharomyces cerevisiae) Glucans and Their In Vivo Antioxidant Activity
Molecules 2017, 22(8), 1266; doi:10.3390/molecules22081266
Received: 21 June 2017 / Accepted: 7 July 2017 / Published: 28 July 2017
PDF Full-text (1868 KB) | HTML Full-text | XML Full-text
Abstract
The effects of sulfation of yeast glucans was optimized using response surface methodology. The degree of sulfation was evaluated from 0.11 to 0.75 using ion-chromatography. The structural characteristics of SYG (sulfation of yeast glucans) with a DS = 0.75 were determined using high-performance
[...] Read more.
The effects of sulfation of yeast glucans was optimized using response surface methodology. The degree of sulfation was evaluated from 0.11 to 0.75 using ion-chromatography. The structural characteristics of SYG (sulfation of yeast glucans) with a DS = 0.75 were determined using high-performance liquid chromatography/gel-permeation chromatography and finally by Fourier transform infrared spectrometry. The SYG had lower viscosity and greater solubility than the native yeast glucans, suggesting that the conformation of the SYG had significantly changed. The results also showed that SYG had a significantly greater antioxidant activity in vivo compared to native yeast glucans. Full article
(This article belongs to the Special Issue Synthesis and Modification of Natural Product)
Figures

Figure 1

Open AccessArticle Development of a UPLC-MS/MS Method for Simultaneous Determination of Six Flavonoids in Rat Plasma after Administration of Maydis stigma Extract and Its Application to a Comparative Pharmacokinetic Study in Normal and Diabetic Rats
Molecules 2017, 22(8), 1267; doi:10.3390/molecules22081267
Received: 23 June 2017 / Revised: 12 July 2017 / Accepted: 27 July 2017 / Published: 29 July 2017
PDF Full-text (1296 KB) | HTML Full-text | XML Full-text
Abstract
Maydis stigma is an important medicine herb used in many parts of the world for treatment of diabetes mellitus, which main bioactive ingredients are flavonoids. This paper describes for the first time a study on the comparative pharmacokinetics of six active flavonoid ingredients
[...] Read more.
Maydis stigma is an important medicine herb used in many parts of the world for treatment of diabetes mellitus, which main bioactive ingredients are flavonoids. This paper describes for the first time a study on the comparative pharmacokinetics of six active flavonoid ingredients of Maydis stigma in normal and diabetic rats orally administrated with the decoction. Therefore, an efficient and sensitive ultra high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of six anti-diabetic ingredients (cynaroside, quercetin, luteolin, isorhamnetin, rutin and formononetin) of Maydis stigma in rat plasma has been developed and validated in plasma samples, which showed good linearity over a wide concentration range (r2 > 0.99), and gave a lower limit of quantification of 1.0 ng·mL−1 for the analytes. The intra- and interday assay variability was less than 15% for all analytes. The mean extraction recoveries and matrix effect of analytes and IS from rats plasma were all more than 85.0%. The stability results showed the measured concentration for six analytes at three QC levels deviated within 15.0%. The results indicated that significant differences in the pharmacokinetic parameters of the analytes were observed between the two groups of animals, whereby the absorptions of these analytes in the diabetic group were all significantly higher than those in the normal group, which provides an experimental basis for the role of Maydis stigma in anti-diabetic treatment. Full article
Figures

Open AccessArticle Molecular Cloning and Characterization of PnbHLH1 Transcription Factor in Panax notoginseng
Molecules 2017, 22(8), 1268; doi:10.3390/molecules22081268
Received: 24 June 2017 / Revised: 18 July 2017 / Accepted: 26 July 2017 / Published: 29 July 2017
PDF Full-text (5262 KB) | HTML Full-text | XML Full-text
Abstract
Panax notoginseng has been extensively used as a traditional Chinese medicine. In the current study, molecular cloning and characterization of PnbHLH1 transcription factor were explored in Panax notoginseng. The full length of the PnbHLH1 gene obtained by splicing was 1430 bp, encoding
[...] Read more.
Panax notoginseng has been extensively used as a traditional Chinese medicine. In the current study, molecular cloning and characterization of PnbHLH1 transcription factor were explored in Panax notoginseng. The full length of the PnbHLH1 gene obtained by splicing was 1430 bp, encoding 321 amino acids. Prokaryotic expression vector pET-28a-PnbHLH1 was constructed and transferred into the BL21 prokaryotic expression strain. An electrophoretic mobility shift assay of PnbHLH1 protein binding to E-box cis-acting elements verified that PnbHLH1 belonged to the bHLH class transcription factor which could interact with the promoter region of the E-box core sequence. The expression levels of key genes involved in the biosynthesis of triterpenoid saponins in PnbHLH1 transgenic cells were higher than those in the wild cells. Similarly, the total saponin contents were increased in the PnbHLH1 transgenic cell lines compared with the wild cell lines. Such results suggest that the PnbHLH1 transcription factor is a positive regulator in the biosynthesis of triterpenoid saponins in Panax notoginseng. Full article
(This article belongs to the Special Issue Current Trends in Ginseng Research)
Figures

Figure 1

Open AccessCommunication In Vitro Evaluation of Sub-Lethal Concentrations of Plant-Derived Antifungal Compounds on FUSARIA Growth and Mycotoxin Production
Molecules 2017, 22(8), 1271; doi:10.3390/molecules22081271
Received: 22 June 2017 / Revised: 25 July 2017 / Accepted: 27 July 2017 / Published: 29 July 2017
PDF Full-text (2380 KB) | HTML Full-text | XML Full-text
Abstract
Phytopathogenic fungi can lead to significant cereal yield losses, also producing mycotoxins dangerous for human and animal health. The fungal control based on the use of synthetic fungicides can be complemented by "green" methods for crop protection, based on the use of natural
[...] Read more.
Phytopathogenic fungi can lead to significant cereal yield losses, also producing mycotoxins dangerous for human and animal health. The fungal control based on the use of synthetic fungicides can be complemented by "green" methods for crop protection, based on the use of natural products. In this frame, the antifungal activities of bergamot and lemon essential oils and of five natural compounds recurrent in essential oils (citronellal, citral, cinnamaldehyde, cuminaldehyde and limonene) have been evaluated against three species of mycotoxigenic fungi (Fusarium sporotrichioides, F. graminearum and F. langsethiae) responsible for Fusarium Head Blight in small-grain cereals. The natural products concentrations effective for reducing or inhibiting the in vitro fungal growth were determined for each fungal species and the following scale of potency was found: cinnamaldehyde > cuminaldehyde > citral > citronellal > bergamot oil > limonene > lemon oil. Moreover, the in vitro mycotoxin productions of the three Fusaria strains exposed to sub-lethal concentrations of the seven products was evaluated. The three fungal species showed variability in response to the treatments, both in terms of inhibition of mycelial growth and in terms of modulation of mycotoxin production that can be enhanced by sub-lethal concentrations of some natural products. This last finding must be taken into account in the frame of an open field application of some plant-derived fungicides. Full article
(This article belongs to the Special Issue Essential Oils as Antimicrobial and Anti-infectious Agents)
Figures

Figure 1

Open AccessArticle Artesunate Activates the Intrinsic Apoptosis of HCT116 Cells through the Suppression of Fatty Acid Synthesis and the NF-κB Pathway
Molecules 2017, 22(8), 1272; doi:10.3390/molecules22081272
Received: 4 July 2017 / Revised: 27 July 2017 / Accepted: 27 July 2017 / Published: 8 August 2017
PDF Full-text (2372 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The artemisinin compounds, which are well-known for their potent therapeutic antimalarial activity, possess in vivo and in vitro antitumor effects. Although the anticancer effect of artemisinin compounds has been extensively reported, the precise mechanisms underlying its cytotoxicity remain under intensive study. In the
[...] Read more.
The artemisinin compounds, which are well-known for their potent therapeutic antimalarial activity, possess in vivo and in vitro antitumor effects. Although the anticancer effect of artemisinin compounds has been extensively reported, the precise mechanisms underlying its cytotoxicity remain under intensive study. In the present study, a high-throughput quantitative proteomics approach was applied to identify differentially expressed proteins of HCT116 colorectal cancer cell line with artesunate (ART) treatment. Through Ingenuity Pathway Analysis, we discovered that the top-ranked ART-regulated biological pathways are abrogation of fatty acid biosynthetic pathway and mitochondrial dysfunction. Subsequent assays showed that ART inhibits HCT116 cell proliferation through suppressing the fatty acid biosynthetic pathway and activating the mitochondrial apoptosis pathway. In addition, ART also regulates several proteins that are involved in NF-κB pathway, and our subsequent assays showed that ART suppresses the NF-κB pathway. These proteomic findings will contribute to improving our understanding of the underlying molecular mechanisms of ART for its therapeutic cytotoxic effect towards cancer cells. Full article
(This article belongs to the Special Issue Artemisinin: Against Malaria, Cancer and Viruses)
Figures

Figure 1

Open AccessArticle Kinetics and Energetics of Thermal Cis-Trans Isomerization of a Resonance-Activated Azobenzene in BMIM-Based Ionic Liquids for PF6/Tf2N Comparison
Molecules 2017, 22(8), 1273; doi:10.3390/molecules22081273
Received: 13 July 2017 / Revised: 27 July 2017 / Accepted: 27 July 2017 / Published: 29 July 2017
PDF Full-text (846 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
BMIM PF6 (1-butyl-3-methylimidazolium hexafluorophosphate) and BMIM Tf2N (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) are two conventional room-temperature ionic liquids widely employed and investigated as reaction media. Despite the presence of the same imidazolium ring in their structure they are different in many chemical and
[...] Read more.
BMIM PF6 (1-butyl-3-methylimidazolium hexafluorophosphate) and BMIM Tf2N (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) are two conventional room-temperature ionic liquids widely employed and investigated as reaction media. Despite the presence of the same imidazolium ring in their structure they are different in many chemical and physical properties due to the nature of the anions. The thermal cis-trans isomerization of an electronically activated azobenzene have been used as reaction model to compare the behavior of PF6 and Tf2N. Rotation is the mechanism by which the investigated azobenzene is converted into the trans isomer spontaneously in the dark both in BMIM PF6 and in BMIM Tf2N. The kinetic rate constants of the process have been determined at different temperatures and the activation energies of the reaction have been calculated according to the Arrhenius and Eyring equations. The results presented herein highlight different solute-solvent interactions involving the PF6 and Tf2N anions during the cis-trans isomerization. Full article
Figures

Open AccessArticle Adiponectin, Leptin, and Leptin Receptor in Obese Patients with Type 2 Diabetes Treated with Insulin Detemir
Molecules 2017, 22(8), 1274; doi:10.3390/molecules22081274
Received: 12 July 2017 / Revised: 25 July 2017 / Accepted: 26 July 2017 / Published: 30 July 2017
PDF Full-text (1730 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the present study is to quantitatively assess the expression of selected regulatory molecules, such as leptin, leptin receptor, and adiponectin in the blood of obese patients with type 2 diabetes both before treatment and after six months of pharmacological therapy
[...] Read more.
The aim of the present study is to quantitatively assess the expression of selected regulatory molecules, such as leptin, leptin receptor, and adiponectin in the blood of obese patients with type 2 diabetes both before treatment and after six months of pharmacological therapy with the long-lasting insulin analogue, insulin detemir. A significant decrease in the analysed regulatory molecules, i.e., leptin receptor and adiponectin, was found in blood plasma of the patients with untreated type 2 diabetes. These changes were accompanied by an increase in plasma leptin concentrations. Insulin treatment resulted in the normalization of plasma leptin receptor and adiponectin concentrations. The circulating leptin level did not change following anti-diabetic therapy with insulin detemir. Gender was a significant factor modifying the circulating level of all the analysed regulatory active compounds. Bioinformatic analysis was performed using Matlab with the Signal Processing Toolbox. The conducted discriminant analysis revealed that the leptin receptor, Δw(19), and adiponectin, Δw(21), were the parameters undergoing the most significant quantitative changes during the six-month therapy with insulin detemir. The conducted examinations indicated the contribution of adipocytokines—the biologically-active mediators of systemic metabolism, such as leptin and adiponectin in the pathomechanism of disorders being the basis for obesity which leads to development of insulin resistance, which, in turn, results in the occurrence of type 2 diabetes. Full article
(This article belongs to the Special Issue Bioactive Compounds for Metabolic Syndrome and Type 2 Diabetes)
Figures

Figure 1

Open AccessArticle Astragalosidic Acid: A New Water-Soluble Derivative of Astragaloside IV Prepared Using Remarkably Simple TEMPO-Mediated Oxidation
Molecules 2017, 22(8), 1275; doi:10.3390/molecules22081275
Received: 12 July 2017 / Accepted: 28 July 2017 / Published: 31 July 2017
PDF Full-text (898 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
There is an urgent need for a water-soluble derivative of astragaloside IV for drug R&D. In the present study, a remarkably simple method for the preparation of such a water-soluble derivative of astragaloside IV has been developed. This protocol involves oxidative 2,2,6,6-tetramethylpiperidine-1-oxyl free
[...] Read more.
There is an urgent need for a water-soluble derivative of astragaloside IV for drug R&D. In the present study, a remarkably simple method for the preparation of such a water-soluble derivative of astragaloside IV has been developed. This protocol involves oxidative 2,2,6,6-tetramethylpiperidine-1-oxyl free radical (TEMPO)-mediated transformation of astragaloside IV to its carboxylic acid derivative, which is a new compound named astragalosidic acid. The structure of astragalosidic acid was elucidated by means of spectroscopic analysis. Its cardioprotective activity was investigated using an in vitro model of cardiomyocyte damage induced by hypoxia/reoxygenation in H9c2 cells. The oxidative TEMPO-mediated transformation proposed in the present study could be applied to other natural saponins, offering an effective and convenient way to develop a new compound with greatly improved structure-based druggability. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Isolation, Purification and Structural Characterization of Two Novel Water-Soluble Polysaccharides from Anredera cordifolia
Molecules 2017, 22(8), 1276; doi:10.3390/molecules22081276
Received: 5 July 2017 / Revised: 23 July 2017 / Accepted: 29 July 2017 / Published: 3 August 2017
PDF Full-text (2189 KB) | HTML Full-text | XML Full-text
Abstract
Anredera cordifolia, a climber and member of the Basellaceae family, has long been a traditional medicine used for the treatment of hyperglycemia in China. Two water-soluble polysaccharides, ACP1-1 and ACP2-1, were isolated from A. cordifolia seeds by hot water extraction. The two
[...] Read more.
Anredera cordifolia, a climber and member of the Basellaceae family, has long been a traditional medicine used for the treatment of hyperglycemia in China. Two water-soluble polysaccharides, ACP1-1 and ACP2-1, were isolated from A. cordifolia seeds by hot water extraction. The two fractions, ACP1-1 and ACP2-1 with molecular weights of 46.78 kDa ± 0.03 and 586.8 kDa ± 0.05, respectively, were purified by chromatography. ACP1-1 contained mannose, glucose, galactose in a molar ratio of 1.08:4.65:1.75, whereas ACP2-1 contained arabinose, ribose, galactose, glucose, mannose in a molar ratio of 0.9:0.4:0.5:1.2:0.9. Based on methylation analysis, ultraviolet and Fourier transform-infrared spectroscopy, and periodate oxidation the main backbone chain of ACP1-1 contained (1→3,6)-galacturonopyranosyl residues interspersed with (1→4)-residues and (1→3)-mannopyranosyl residues. The main backbone chain of ACP2-1 contained (1→3)-galacturonopyranosyl residues interspersed with (1→4)-glucopyranosyl residues. Full article
(This article belongs to the Special Issue Advances in Natural Polysaccharides Research)
Figures

Figure 1

Open AccessCommunication An Efficient Synthesis of Arylated Pyridines from Conjugated Acetylenes and Substituted Benzylamines Catalyzed by Base
Molecules 2017, 22(8), 1277; doi:10.3390/molecules22081277
Received: 29 June 2017 / Revised: 20 July 2017 / Accepted: 29 July 2017 / Published: 31 July 2017
PDF Full-text (6246 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
An efficient base-catalyzed synthesis of arylated pyridines has been disclosed. This reaction involving conjugated acetylenes and substituted benzylamines proceeded smoothly, giving rise to tri-aryl substituted pyridines which are biologically relevant compounds in good to excellent yields in N,N-dimethylformamide (DMF) under air at 140
[...] Read more.
An efficient base-catalyzed synthesis of arylated pyridines has been disclosed. This reaction involving conjugated acetylenes and substituted benzylamines proceeded smoothly, giving rise to tri-aryl substituted pyridines which are biologically relevant compounds in good to excellent yields in N,N-dimethylformamide (DMF) under air at 140 °C with K2CO3 as catalyst. Full article
Open AccessArticle An Efficient One-Pot Catalyzed Synthesis of 2,4-Disubstituted 5-Nitroimidazoles Displaying Antiparasitic and Antibacterial Activities
Molecules 2017, 22(8), 1278; doi:10.3390/molecules22081278
Received: 20 July 2017 / Accepted: 29 July 2017 / Published: 3 August 2017
PDF Full-text (1922 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A one-pot regioselective bis-Suzuki-Miyaura or Suzuki-Miyaura/Sonogashira reaction on 2,4-dibromo-1-methyl-5-nitro-1H-imidazole under microwave heating was developed. This method is applicable to a wide range of (hetero)arylboronic acids and terminal alkynes. Additionally, this approach provides a simple and efficient way to synthesize 2,4-disubstituted 5-nitroimidazole
[...] Read more.
A one-pot regioselective bis-Suzuki-Miyaura or Suzuki-Miyaura/Sonogashira reaction on 2,4-dibromo-1-methyl-5-nitro-1H-imidazole under microwave heating was developed. This method is applicable to a wide range of (hetero)arylboronic acids and terminal alkynes. Additionally, this approach provides a simple and efficient way to synthesize 2,4-disubstituted 5-nitroimidazole derivatives with antibacterial and antiparasitic properties. Full article
(This article belongs to the Special Issue Multicomponent Reaction-Based Synthesis of Bioactive Molecules)
Figures

Figure 1

Open AccessArticle Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br.
Molecules 2017, 22(8), 1279; doi:10.3390/molecules22081279
Received: 10 July 2017 / Revised: 26 July 2017 / Accepted: 27 July 2017 / Published: 1 August 2017
PDF Full-text (4686 KB) | HTML Full-text | XML Full-text
Abstract
This study investigated the chemical composition changes of Salvia plebeia R.Br. cultivated under different light sources, including florescent light and sunlight. The plants were exposed to fluorescent light for four months and sunlight and then examined for the next 5–7 months. Plants were
[...] Read more.
This study investigated the chemical composition changes of Salvia plebeia R.Br. cultivated under different light sources, including florescent light and sunlight. The plants were exposed to fluorescent light for four months and sunlight and then examined for the next 5–7 months. Plants were harvested monthly during the seven months, and we examined whether the difference in light source affected the phenolic and flavonoid contents and antioxidant activity. A simple and reliable HPLC method using a PAH C18 column was applied for the quantitative analysis of two triterpenoids from the S. plebeia groups. Oleanolic acid (OA) and ursolic acid (UA) showed good linearity (R2 > 0.9999) within the test ranges (0.005–0.05 mg/mL), and the average percentage recoveries of the OA and UA were 95.1–104.8% and 97.2–107.1%, respectively. The intra- and inter-day relative standard deviations (RSDs) were less than 2.0%. After exposure to sunlight, the phenolic contents, including rosmarinic acid, showed a reduced tendency, whereas the flavonoid contents, including homoplantaginin and luteolin 7-glucoside, were increased. The content of the triterpenoids also showed an increased tendency under sunlight irradiation, but the variance was not larger than those of the phenolic and flavonoid contents. Among experimental groups, the group harvested at six months, having been exposed to sunlight for two months, showed the most potent antioxidant activity. Therefore, these results showed that the chemical composition and antioxidant activities of S. plebeia R.Br. was affected from environmental culture conditions, such as light source. Our studies will be useful for the development of functional materials using S. plebeia R.Br. Full article
Figures

Open AccessArticle Nontargeted Metabolomic Analysis of Four Different Parts of Platycodon grandiflorum Grown in Northeast China
Molecules 2017, 22(8), 1280; doi:10.3390/molecules22081280
Received: 5 July 2017 / Revised: 25 July 2017 / Accepted: 29 July 2017 / Published: 3 August 2017
PDF Full-text (1608 KB) | HTML Full-text | XML Full-text
Abstract
Platycodonis radix is extensively used for treating cough, excessive phlegm, sore throat, bronchitis and asthma in the clinic. Meanwhile, the stems, leaves and seeds of Platycodon grandiflorum (PG) have some pharmaceutical activities such as anti-inflammation and anti-oxidation effects, etc. These effects must be
[...] Read more.
Platycodonis radix is extensively used for treating cough, excessive phlegm, sore throat, bronchitis and asthma in the clinic. Meanwhile, the stems, leaves and seeds of Platycodon grandiflorum (PG) have some pharmaceutical activities such as anti-inflammation and anti-oxidation effects, etc. These effects must be caused by the different metabolites in various parts of herb. In order to profile the different parts of PG, the ultra-high performance liquid chromatography combined with quadrupole time-of- flight mass spectrometry (UPLC-QTOF-MSE) coupled with UNIFI platform and multivariate statistical analyses was used in this study. Consequently, for the constituent screening, 73, 42, 35, 44 compounds were characterized from the root, stem, leaf and seed, respectively. The stem, leaf and seed contain more flavonoids but few saponins that can be easily discriminated in the root. For the metabolomic analysis, 15, 5, 7, 11 robust biomarkers enabling the differentiation among root, stem, leaf and seed, were discovered. These biomarkers can be used for rapid identification of four different parts of PG grown in northeast China. Full article
(This article belongs to the Section Metabolites)
Figures

Figure 1

Open AccessArticle Three New Sesquiterpene Glycosides from the Rhizomes of Trillium tschonoskii
Molecules 2017, 22(8), 1283; doi:10.3390/molecules22081283
Received: 24 June 2017 / Revised: 1 August 2017 / Accepted: 1 August 2017 / Published: 2 August 2017
Abstract
Three new sesquiterpene glycosides, possessing a rare aglycone with a sulfonyl between C-1 and C-15 positions, named 3-(3′E-7′R,8′-dihydroxy-4′,8′-dimethyl-3′-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7′-O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranoside (1), 3-(3′E-7′R,8′-dihydroxy-4′,8′-dimethyl-3′-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen
[...] Read more.
Three new sesquiterpene glycosides, possessing a rare aglycone with a sulfonyl between C-1 and C-15 positions, named 3-(3′E-7′R,8′-dihydroxy-4′,8′-dimethyl-3′-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7′-O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranoside (1), 3-(3′E-7′R,8′-dihydroxy-4′,8′-dimethyl-3′-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7′-O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranoside (2), and 3-(3′E-7′R,8′-dihydroxy-4′,8′-dimethyl-3′-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7′-O-β-d-glucopyranosyl-6′-O-acetyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranoside (3), respectively, were isolated from the rhizomes of Trillium tschonoskii. Their structures were established on the basis of spectroscopic data, including HR-ESI-MS, IR, 1D and 2D NMR. The cytotoxic properties of the three compounds were investigated using human hepatic L02 cells. Full article
(This article belongs to the Special Issue Diversity of Terpenoids)
Open AccessCommunication Efficient Dye-Sensitized Solar Cells Based on Nanoflower-like ZnO Photoelectrode
Molecules 2017, 22(8), 1284; doi:10.3390/molecules22081284
Received: 5 July 2017 / Revised: 26 July 2017 / Accepted: 1 August 2017 / Published: 3 August 2017
PDF Full-text (2350 KB) | HTML Full-text | XML Full-text
Abstract
A photoanode material ZnO nanoflower (ZNFs) for efficient dye-sensitized solar cell (DSSC) was prepared. This unique structure can significantly increase the specific surface area and amount of light absorption, leading to a higher short-circuit current density. Furthermore, ZNFs resulted in closer spacing between
[...] Read more.
A photoanode material ZnO nanoflower (ZNFs) for efficient dye-sensitized solar cell (DSSC) was prepared. This unique structure can significantly increase the specific surface area and amount of light absorption, leading to a higher short-circuit current density. Furthermore, ZNFs resulted in closer spacing between the nanorods and more direct conduction paths for electrons, leading to higher open-circuit voltage. The overall promising power conversion efficiency of 5.96% was obtained with photoanodes of 8.5 μm thickness. This work shows that ZNFs is an attractive material and has good potential for application in high efficiency ZnO-based DSSCs. Full article
(This article belongs to the Special Issue Nanocrystals: Synthesis, Characterization and Applications)
Figures

Figure 1

Open AccessArticle Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells
Molecules 2017, 22(8), 1285; doi:10.3390/molecules22081285
Received: 17 July 2017 / Accepted: 31 July 2017 / Published: 2 August 2017
PDF Full-text (2254 KB) | HTML Full-text | XML Full-text
Abstract
Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1
[...] Read more.
Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level. Full article
(This article belongs to the Special Issue Natural Products: Anticancer Potential and Beyond)
Figures

Figure 1a

Open AccessArticle Optimization of the Ultrasound-Assisted Extraction of Phenolic Compounds from Brosimum alicastrum Leaves and the Evaluation of Their Radical-Scavenging Activity
Molecules 2017, 22(8), 1286; doi:10.3390/molecules22081286
Received: 17 July 2017 / Revised: 29 July 2017 / Accepted: 31 July 2017 / Published: 7 August 2017
PDF Full-text (4073 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In order to maximize the yield of the total phenolic content (TPC) and total monomeric anthocyanin (TMA) from Brosimum alicastrum leaf and to study the radical-scavenging activity, a three-level three-factor Box–Behnken design (BBD) was used to determine the optimal points for ultrasound-assisted extraction
[...] Read more.
In order to maximize the yield of the total phenolic content (TPC) and total monomeric anthocyanin (TMA) from Brosimum alicastrum leaf and to study the radical-scavenging activity, a three-level three-factor Box–Behnken design (BBD) was used to determine the optimal points for ultrasound-assisted extraction (UAE). In this study, we analyzed the extraction time (10, 20, and 30 min), temperature (28, 30, and 32 °C), and probe sonication power (40%, 28 W/cm2; 60%, 51 W/cm2; and 80%, 74 W/cm2). Analysis of variance (ANOVA) indicated that the sonication power plays a significant role in the extraction of phenolic compounds. An increase in time and temperature resulted in a decrease in the yield, in particular, of the TMA group. DPPH was found to be a better indicator of radical-scavenging activity than ABTS. The predicted TPC and TMA optimum levels (45.18 mg GAE/g and 15.16 mg CyE/100 g) were obtained at 28 °C, 80%, and 20–10 min. DPPH obtained a maximum value (67.27 μmol TE/g) under same optimization conditions. The RSM confirmed that TPC and TMA enhanced the antioxidant activity when subjected to low temperature (28 °C), extraction time less than 20 min, and higher sonication power (74 W/cm2), and hence achieving the better DPPH scavenging activity. Full article
Figures

Figure 1

Open AccessArticle Novel Methylselenoesters as Antiproliferative Agents
Molecules 2017, 22(8), 1288; doi:10.3390/molecules22081288
Received: 29 June 2017 / Revised: 26 July 2017 / Accepted: 28 July 2017 / Published: 2 August 2017
PDF Full-text (7521 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Selenium (Se) compounds are potential therapeutic agents in cancer. Importantly, the biological effects of Se compounds are exerted by their metabolites, with methylselenol (CH3SeH) being one of the key executors. In this study, we developed a new series of methylselenoesters with
[...] Read more.
Selenium (Se) compounds are potential therapeutic agents in cancer. Importantly, the biological effects of Se compounds are exerted by their metabolites, with methylselenol (CH3SeH) being one of the key executors. In this study, we developed a new series of methylselenoesters with different scaffolds aiming to modulate the release of CH3SeH. The fifteen compounds follow Lipinski’s Rule of Five and with exception of compounds 1 and 14, present better drug-likeness values than the positive control methylseleninic acid. The compounds were evaluated to determine their radical scavenging activity. Compound 11 reduced both DPPH and ABTS radicals. The cytotoxicity of the compounds was evaluated in a panel of five cancer cell lines (prostate, colon and lung carcinoma, mammary adenocarcinoma and chronic myelogenous leukemia) and two non-malignant (lung and mammary epithelial) cell lines. Ten compounds had GI50 values below 10 μM at 72 h in four cancer cell lines. Compounds 5 and 15 were chosen for further characterization of their mechanism of action in the mammary adenocarcinoma cell line due to their similarity with methylseleninic acid. Both compounds induced G2/M arrest whereas cell death was partially executed by caspases. The reduction and metabolism were also investigated, and both compounds were shown to be substrates for redox active enzyme thioredoxin reductase. Full article
Figures

Open AccessArticle Capillary-Inserted Rotor Design for HRµMAS NMR-Based Metabolomics on Mass-Limited Neurospheres
Molecules 2017, 22(8), 1289; doi:10.3390/molecules22081289
Received: 24 June 2017 / Accepted: 30 July 2017 / Published: 3 August 2017
PDF Full-text (698 KB) | HTML Full-text | XML Full-text
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique and has been widely used in metabolomics. However, the intrinsic low sensitivity of NMR prevents its applications to systems with limited sample availabilities. In this study, a new experimental approach is presented to
[...] Read more.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique and has been widely used in metabolomics. However, the intrinsic low sensitivity of NMR prevents its applications to systems with limited sample availabilities. In this study, a new experimental approach is presented to analyze mass-scarce samples in limited volumes of less than 300 nL with simple handling. The sample is loaded into the glass capillary, and this capillary is then inserted into a Kel-F rotor. The experimental performance of the capillary-inserted rotor (capillary-insert) is investigated on an isotropic solution of sucrose by the use of a high-resolution micro-sized magic angle spinning (HRµMAS) probe. The acquired NMR signal’s sensitivity to a given sample amount is comparable or even higher in comparison to that recorded by the standard solution NMR probe. More importantly, this capillary-insert coupled with the HRµMAS probe allows in-depth studies of heterogeneous samples as the MAS removes the line broadening caused by the heterogeneity. The NMR analyses of mass-limited cultured neurospheres have been demonstrated, resulting in high quality spectra where numerous metabolites are unambiguously identified. Full article
(This article belongs to the Special Issue Recent Advances in Biomolecular NMR Spectroscopy)
Figures

Figure 1

Open AccessArticle Development of HA/Ag-NPs Composite Coating from Green Process for Hip Applications
Molecules 2017, 22(8), 1291; doi:10.3390/molecules22081291
Received: 9 June 2017 / Accepted: 31 July 2017 / Published: 8 August 2017
PDF Full-text (5572 KB) | HTML Full-text | XML Full-text
Abstract
In the present study, biological hydroxyapatite (HA) was obtained from bovine bones through a thermal process. A total of 0% and 1% of silver nanoparticles (Ag-NPs) synthesized from Opuntia ficus (nopal) were added to the biological hydroxyapatite coatings using an atmospheric plasma spray
[...] Read more.
In the present study, biological hydroxyapatite (HA) was obtained from bovine bones through a thermal process. A total of 0% and 1% of silver nanoparticles (Ag-NPs) synthesized from Opuntia ficus (nopal) were added to the biological hydroxyapatite coatings using an atmospheric plasma spray (APS) on a Ti6Al4V substrate. Following this, its antimicrobial efficiency was evaluated against the following bacterial strains: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. This was conducted according to the Japanese Industrial Standard (JIS) Z2801:2000 “Antimicrobial Product-Test for Antimicrobial Activity and Efficacy”. Scanning electron microscopy (SEM) showed that the silver nanoparticles (Ag-NPs) were evenly distributed on the coating surface. Energy dispersive X-ray spectroscopy (EDX) shows that apatite deposition occurs on a daily basis, maintaining a Ca/P rate between 2.12 and 1.45. Biocompatibility properties were evaluated with osteoblast-like cells (MC3T3-E1) by single-cell gel electrophoresis assay and Tali image cytometry. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
Figures

Open AccessArticle Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus
Molecules 2017, 22(8), 1292; doi:10.3390/molecules22081292
Received: 14 July 2017 / Revised: 30 July 2017 / Accepted: 1 August 2017 / Published: 3 August 2017
PDF Full-text (2716 KB) | HTML Full-text | XML Full-text
Abstract
Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the
[...] Read more.
Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae. Full article
Figures

Figure 1

Open AccessArticle Trehalose Inhibits A53T Mutant α-Synuclein Overexpression and Neurotoxicity in Transduced PC12 Cells
Molecules 2017, 22(8), 1293; doi:10.3390/molecules22081293
Received: 6 July 2017 / Accepted: 1 August 2017 / Published: 8 August 2017
PDF Full-text (2670 KB) | HTML Full-text | XML Full-text
Abstract
Fibrillar accumulation of A53T mutant α-synuclein (A53T-AS) in Lewy bodies is a symptom of Parkinsonism. Inhibitions of the overexpression and fibrillar aggregation of α-synuclein (AS) in vivo could be a promising strategy for treating Parkinson’s disease (PD). In this study, at concentrations lower
[...] Read more.
Fibrillar accumulation of A53T mutant α-synuclein (A53T-AS) in Lewy bodies is a symptom of Parkinsonism. Inhibitions of the overexpression and fibrillar aggregation of α-synuclein (AS) in vivo could be a promising strategy for treating Parkinson’s disease (PD). In this study, at concentrations lower than 1 mM, trehalose decreased the A53T-AS expression level in transduced PC12 cells. Although H2O2 and aluminum ions increased the expression level and neurotoxicity of A53T-AS in cells, proper trehalose concentrations inhibited the event. These studies adequately prove that trehalose at an appropriate dose would be potentially useful for PD treatment. Full article
(This article belongs to the Special Issue Neuroprotective Agents)
Figures

Open AccessArticle Intramolecular Hydrogen Bonding and Conformational Preferences of Arzanol—An Antioxidant Acylphloroglucinol
Molecules 2017, 22(8), 1294; doi:10.3390/molecules22081294
Received: 7 June 2017 / Revised: 24 July 2017 / Accepted: 25 July 2017 / Published: 3 August 2017
PDF Full-text (5114 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Arzanol is a naturally-occurring prenylated acylphloroglucinol isolated from Helichrysum italicum and exhibiting anti-oxidant, antibiotic and antiviral activities. The molecule contains an α-pyrone moiety attached to the phloroglucinol moiety through a methylene bridge. The presence of several hydrogen bond donor or acceptor sites makes
[...] Read more.
Arzanol is a naturally-occurring prenylated acylphloroglucinol isolated from Helichrysum italicum and exhibiting anti-oxidant, antibiotic and antiviral activities. The molecule contains an α-pyrone moiety attached to the phloroglucinol moiety through a methylene bridge. The presence of several hydrogen bond donor or acceptor sites makes intramolecular hydrogen bonding patterns the dominant stabilising factor. Conformers with all the possible different hydrogen bonding patterns were calculated at the HF/6-31G(d,p) and DFT/B3LYP/6-31+G(d,p) levels with fully relaxed geometry in vacuo and in three solvents—chloroform, acetonitrile and water (these levels being chosen to enable comparisons with previous studies on acylphloroglucinols). Calculations in solution were performed with the Polarisable Continuum Model. The results show that the lowest energy conformers have the highest number of stronger intramolecular hydrogen bonds. The influence of intramolecular hydrogen bonding patterns on the other molecular properties is also analysed. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding 2017)
Figures

Figure 1

Open AccessArticle An Efficient Synthesis of Spiro[indoline-3,9′-xanthene]trione Derivatives Catalyzed by Magnesium Perchlorate
Molecules 2017, 22(8), 1295; doi:10.3390/molecules22081295
Received: 19 July 2017 / Revised: 31 July 2017 / Accepted: 1 August 2017 / Published: 4 August 2017
PDF Full-text (570 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A simple and efficient method for the synthesis of spiro[indoline-3,9′-xanthene]trione derivatives by means of condensation between isatins and 1,3-cyclohexanedione in the presence of a catalytic amount of magnesium perchlorate at 80 °C in 50% aqueous ethanol medium has been described. Notably, the present
[...] Read more.
A simple and efficient method for the synthesis of spiro[indoline-3,9′-xanthene]trione derivatives by means of condensation between isatins and 1,3-cyclohexanedione in the presence of a catalytic amount of magnesium perchlorate at 80 °C in 50% aqueous ethanol medium has been described. Notably, the present method offers desirable advantages of good yields, simplicity of workup procedure, easy purification, and reduced reaction times. Full article
(This article belongs to the Special Issue Advances in Spiro Compounds)
Figures

Open AccessArticle A New Approach to Synthesize of 4-Phenacylideneflavene Derivatives and to Evaluate Their Cytotoxic Effects on HepG2 Cell Line
Molecules 2017, 22(8), 1296; doi:10.3390/molecules22081296
Received: 29 June 2017 / Accepted: 2 August 2017 / Published: 9 August 2017
PDF Full-text (722 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, a convenient approach and green procedure for the synthesis of 4-phenacylideneflavenes has been developed from the reaction between 2,4-dihydroxybenzaldehyde and substituted acetophenones using boric acid as a catalyst in polyethylene glycol 400. Seven 4-phenacylideneflavenes were synthetized and their structures were
[...] Read more.
In this study, a convenient approach and green procedure for the synthesis of 4-phenacylideneflavenes has been developed from the reaction between 2,4-dihydroxybenzaldehyde and substituted acetophenones using boric acid as a catalyst in polyethylene glycol 400. Seven 4-phenacylideneflavenes were synthetized and their structures were confirmed by NMR and mass spectral analyses. Meanwhile, their possible mechanism of formation was also discussed. These products were found to have potential cytotoxic effect on HepG2 cell line with IC50 values from 12.5 to 50 µM. Full article
(This article belongs to the Special Issue Multicomponent Reaction-Based Synthesis of Bioactive Molecules)
Figures

Open AccessArticle Time- and NADPH-Dependent Inhibition on CYP3A by Gomisin A and the Pharmacokinetic Interactions between Gomisin A and Cyclophosphamide in Rats
Molecules 2017, 22(8), 1298; doi:10.3390/molecules22081298
Received: 4 July 2017 / Accepted: 3 August 2017 / Published: 8 August 2017
PDF Full-text (2799 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The traditional Chinese medicine Schisandra chinensis has remarkable protective effects against chemical-induced toxicity. Cyclophosphamide (CTX), in spite advances in chemotherapy and immunosuppressive regimes, is prone to cause severe toxicity due to its chloroacetaldehyde (CAA) metabolite produced by CYP3A. Our previous study identified that
[...] Read more.
The traditional Chinese medicine Schisandra chinensis has remarkable protective effects against chemical-induced toxicity. Cyclophosphamide (CTX), in spite advances in chemotherapy and immunosuppressive regimes, is prone to cause severe toxicity due to its chloroacetaldehyde (CAA) metabolite produced by CYP3A. Our previous study identified that S. chinensis extract (SCE) co-administration potently decreased CAA production and attenuated liver, kidney and brain injuries in CTX-treated rats. Gomisin A (Gom A) is proved to be one of the most abundant bioactive lignans in S. chinensis with a significant CYP3A inhibitory effect. To find out whether and how Gom A participated in the chemoprevention of SCE against CTX toxicity, the Gom A-caused CYP3A inhibition in vitro as well as the pharmacokinetic interactions between Gom A and CTX in vivo were examined in this study. Using human liver microsomes, a reversible inhibition assay revealed that Gom A was a competitive inhibitor with a KI value of 1.10 µM, and the time- and NADPH-dependent CYP3A inhibition of Gom A was observed in a time-dependent inhibition assay (KI = 0.35 µM, kinact = 1.96 min−1). Hepatic CYP3A mRNA expression experienced a significant increase in our rat model with Gom A administration. This explained why CAA production decreased in the 0.5 h- and 6 h-pretreatment rat groups while it increased in the 24 h- and 72 h-pretreatment groups, indicating a bidirectional effect of Gom A on CYP3A-mediated CTX metabolism. The present study suggested that Gom A participates like SCE in the pharmacokinetic intervention of CTX by blocking CYP3A-mediated metabolism and reducing CAA production, and thus plays an important role in the chemopreventive activity of S. chinensis against CTX toxicity, in addition to the previously recognized protective effects. Also, the combined use of S. chinensis preparation or other drugs containing Gom A as the main component with CTX needed to be addressed for better clinical intervention. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Open AccessArticle γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells
Molecules 2017, 22(8), 1299; doi:10.3390/molecules22081299
Received: 10 July 2017 / Revised: 28 July 2017 / Accepted: 2 August 2017 / Published: 4 August 2017
PDF Full-text (5063 KB) | HTML Full-text | XML Full-text
Abstract
γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying
[...] Read more.
γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC50) of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose) polymerase (PARP) cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy. Full article
(This article belongs to the Special Issue Natural Products: Anticancer Potential and Beyond)
Figures

Open AccessArticle Five New Phenolic Compounds with Antioxidant Activities from the Medicinal Insect Blaps rynchopetera
Molecules 2017, 22(8), 1301; doi:10.3390/molecules22081301
Received: 9 July 2017 / Accepted: 31 July 2017 / Published: 4 August 2017
PDF Full-text (2111 KB) | HTML Full-text | XML Full-text
Abstract
Five new phenolic compounds rynchopeterines A–E (15), in addition to thirteen known phenolics, were isolated from Blaps rynchopetera Fairmaire, a kind of medicinal insect utilized by the Yi Nationality in Yunnan Province of China. Their structures were established on
[...] Read more.
Five new phenolic compounds rynchopeterines A–E (15), in addition to thirteen known phenolics, were isolated from Blaps rynchopetera Fairmaire, a kind of medicinal insect utilized by the Yi Nationality in Yunnan Province of China. Their structures were established on the basis of extensive spectroscopic analyses (1D and 2D NMR, HR-MS, IR) along with calculated electronic circular dichroism method. Rynchopeterines A–E (14) exhibited significant antioxidant activities with IC50 values of 7.67–12.3 μg/mL measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Besides, rynchopeterines B (2) and C (3) showed mild cytotoxicity against tumor cell Caco-2 and A549. Full article
Figures

Figure 1

Open AccessArticle Identification and Biological Evaluation of Secondary Metabolites from Marine Derived Fungi-Aspergillus sp. SCSIOW3, Cultivated in the Presence of Epigenetic Modifying Agents
Molecules 2017, 22(8), 1302; doi:10.3390/molecules22081302
Received: 6 July 2017 / Accepted: 1 August 2017 / Published: 4 August 2017
PDF Full-text (898 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW3, resulting in significant changes of the secondary metabolites. One new diphenylether-O-glycoside (diorcinol 3-O-α-D-ribofuranoside), along with seven known compounds, were isolated from the culture treated with a
[...] Read more.
Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW3, resulting in significant changes of the secondary metabolites. One new diphenylether-O-glycoside (diorcinol 3-O-α-D-ribofuranoside), along with seven known compounds, were isolated from the culture treated with a combination of histone deacetylase inhibitor (suberohydroxamic acid) and DNA methyltransferase inhibitor (5-azacytidine). Compounds 2 and 4 exhibited significant biomembrane protective effect of erythrocytes. 2 also showed algicidal activity against Chattonella marina, a bloom forming alga responsible for large scale fish deaths. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Open AccessCommunication High Solid Fluorescence of a Pyrazoline Derivative through Hydrogen Bonding
Molecules 2017, 22(8), 1304; doi:10.3390/molecules22081304
Received: 21 July 2017 / Revised: 3 August 2017 / Accepted: 4 August 2017 / Published: 4 August 2017
PDF Full-text (1890 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Pyrazoline and its derivatives often exhibit strong emissions in dilute solutions, but their emission intensity is often dramatically reduced in the solid state due to strong intermolecular interactions between neighboring molecules. In this report, we successfully synthesized a new pyrazoline 4-(3-(4-(decyloxy)phenyl)-1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-N,N-diethylaniline (PPDPD), into
[...] Read more.
Pyrazoline and its derivatives often exhibit strong emissions in dilute solutions, but their emission intensity is often dramatically reduced in the solid state due to strong intermolecular interactions between neighboring molecules. In this report, we successfully synthesized a new pyrazoline 4-(3-(4-(decyloxy)phenyl)-1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-N,N-diethylaniline (PPDPD), into which seven fluorine (F) atoms were incorporated. In the solid state, PPDPD emits a strong blue light at λmax 430 nm with a fluorescence quantum yield of up to 41.3%. Single-crystal analysis showed the presence of intra/intermolecular C-H···F bonds that may impede molecular motion and block the non-radiative decay channel. Compound PPDPD therefore shows high emission efficiency in the solid state. Full article
(This article belongs to the Section Photochemistry)
Figures

Open AccessArticle Fluorescent Polystyrene Films for the Detection of Volatile Organic Compounds Using the Twisted Intramolecular Charge Transfer Mechanism
Molecules 2017, 22(8), 1306; doi:10.3390/molecules22081306
Received: 8 June 2017 / Revised: 31 July 2017 / Accepted: 3 August 2017 / Published: 6 August 2017
PDF Full-text (4174 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Thin films of styrene copolymers containing fluorescent molecular rotors were demonstrated to be strongly sensitive to volatile organic compounds (VOCs). Styrene copolymers of 2-[4-vinyl(1,1′-biphenyl)-4′-yl]-cyanovinyljulolidine (JCBF) were prepared with different P(STY-co-JCBF)(m) compositions (m% = 0.10–1.00) and molecular weights of about 12,000 g/mol.
[...] Read more.
Thin films of styrene copolymers containing fluorescent molecular rotors were demonstrated to be strongly sensitive to volatile organic compounds (VOCs). Styrene copolymers of 2-[4-vinyl(1,1′-biphenyl)-4′-yl]-cyanovinyljulolidine (JCBF) were prepared with different P(STY-co-JCBF)(m) compositions (m% = 0.10–1.00) and molecular weights of about 12,000 g/mol. Methanol solutions of JCBF were not emissive due to the formation of the typical twisted intramolecular charge transfer (TICT) state at low viscosity regime, which formation was effectively hampered by adding progressive amounts of glycerol. The sensing performances of the spin-coated copolymer films (thickness of about 4 µm) demonstrated significant vapochromism when exposed to VOCs characterized by high vapour pressure and favourable interaction with the polymer matrix such as THF, CHCl3 and CH2Cl2. The vapochromic response was also reversible and reproducible after successive exposure cycles, whereas the fluorescence variation scaled linearly with VOC concentration, thus suggesting future applications as VOC optical sensors. Full article
Figures

Figure 1

Open AccessArticle Characterization of Proanthocyanidin Oligomers of Ephedra sinica
Molecules 2017, 22(8), 1308; doi:10.3390/molecules22081308
Received: 14 July 2017 / Revised: 27 July 2017 / Accepted: 3 August 2017 / Published: 6 August 2017
PDF Full-text (8684 KB) | HTML Full-text | XML Full-text
Abstract
Ephedra sinica, an important plant in Chinese traditional medicine, contains a complex mixture of proanthocyanidin oligomers as major constituents; however, only the minor components have been chemically characterized. In this study, oligomers with relatively large molecular weights, which form the main body
[...] Read more.
Ephedra sinica, an important plant in Chinese traditional medicine, contains a complex mixture of proanthocyanidin oligomers as major constituents; however, only the minor components have been chemically characterized. In this study, oligomers with relatively large molecular weights, which form the main body of the proanthocyanidin fractions, were separated by adsorption and size-exclusion chromatography. Acid-catalyzed degradation in the presence of mercaptoethanol or phloroglucinol led to the isolation of 18 fragments, the structures of which were elucidated from their experimental and TDDFT-calculated ECD spectra. The results indicated that (−)-epigallocatechin was the main extension unit, while catechin, the A-type epigallocatechin–gallocatechin dimer, and the A-type epigallocatechin homodimer, were identified as the terminal units. Among the degradation products, thioethers of gallocatechin with 3,4-cis configurations, a B-type prodelphinidin dimer, a prodelphinidin trimer with both A- and B-type linkages, and a prodelphinidin dimer with an α-substituted A-type linkage were new compounds. In addition, a phloroglucinol adduct of an A-type prodelphinidin dimer, a doubly-linked phloroglucinol adduct of epigallocatechin, and a unique product with a flavan-3-ol skeleton generated by the rearrangement of the aromatic rings were also isolated. Full article
Figures

Figure 1

Open AccessArticle Bioactive Constituents from the Whole Plants of Gentianella acuta (Michx.) Hulten
Molecules 2017, 22(8), 1309; doi:10.3390/molecules22081309
Received: 6 July 2017 / Revised: 1 August 2017 / Accepted: 4 August 2017 / Published: 6 August 2017
PDF Full-text (2694 KB) | HTML Full-text | XML Full-text
Abstract
As a Mongolian native medicine and Ewenki folk medicinal plant, Gentianella acuta has been widely used for the treatment of diarrhea, hepatitis, arrhythmia, and coronary heart disease. In the course of investigating efficacy compounds to treat diarrhea using a mouse isolated intestine tissue
[...] Read more.
As a Mongolian native medicine and Ewenki folk medicinal plant, Gentianella acuta has been widely used for the treatment of diarrhea, hepatitis, arrhythmia, and coronary heart disease. In the course of investigating efficacy compounds to treat diarrhea using a mouse isolated intestine tissue model, we found 70% EtOH extract of G. acuta whole plants had an inhibitory effect on intestine contraction tension. Here, nineteen constituents, including five new compounds, named as gentiiridosides A (1), B (2), gentilignanoside A (3), (1R)-2,2,3-trimethyl-4-hydroxymethylcyclopent-3-ene-1-methyl-O-β-d-glucopyranoside (4), and (3Z)-3-hexene-1,5-diol 1-O-α-l-arabinopyranosyl(1→6)-β-d-glucopyranoside (5) were obtained from it. The structures of them were elucidated by chemical and spectroscopic methods. Furthermore, the inhibitory effects on motility of mouse isolated intestine tissue of the above mentioned compounds and other thirteen iridoid- and secoiridoid-type monoterpenes (710, 1316, 18, 19, 21, 22, and 25) previously obtained in the plant were analyzed. As results, new compound 5, some secoiridoid-type monoterpenes 7, 10, 1214, 16, and 17, as well as 7-O-9′-type lignans 31 and 32 displayed significant inhibitory effect on contraction tension at 40 μM. Full article
Figures

Figure 1

Open AccessArticle Isolation and Purification of Three Ecdysteroids from the Stems of Diploclisia glaucescens by High-Speed Countercurrent Chromatography and Their Anti-Inflammatory Activities In Vitro
Molecules 2017, 22(8), 1310; doi:10.3390/molecules22081310
Received: 25 July 2017 / Accepted: 30 July 2017 / Published: 7 August 2017
PDF Full-text (956 KB) | HTML Full-text | XML Full-text
Abstract
High-speed counter-current chromatography was used to separate and purify ecdysteroids for the first time from the stems of Diploclisia glaucescens using a two-phase solvent system composed of ethyl acetate–n-butanol–ethanol–water (3:0.2:0.8:3, v/v). Three ecdysteroids were obtained from 260 mg
[...] Read more.
High-speed counter-current chromatography was used to separate and purify ecdysteroids for the first time from the stems of Diploclisia glaucescens using a two-phase solvent system composed of ethyl acetate–n-butanol–ethanol–water (3:0.2:0.8:3, v/v). Three ecdysteroids were obtained from 260 mg of ethyl acetate extract of the residue obtained after evaporation of the crude ethanolicextractof D. glaucescens in one-step separation, which were identified as paristerone (I, 30.5 mg), ecdysterone (II, 7.2 mg), and capitasterone (III, 8.1 mg) by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). Their anti-inflammatory activities were evaluated by measuring the inhibitory ratios of β-glucuronidase release in rat polymorphonuclear leukocytes (PMNs) induced by platelet-activating factor. Compounds IIII showed significant anti-inflammatory activities with IC50-values ranging from 1.51 to 11.68 μM, respectively. Full article
(This article belongs to the Special Issue Anti-inflammatory Agents)
Figures

Figure 1

Open AccessArticle The Role of Solvent-Accessible Leu-208 of Cold-Active Pseudomonas fluorescens Strain AMS8 Lipase in Interfacial Activation, Substrate Accessibility and Low-Molecular Weight Esterification in the Presence of Toluene
Molecules 2017, 22(8), 1312; doi:10.3390/molecules22081312
Received: 7 July 2017 / Revised: 31 July 2017 / Accepted: 4 August 2017 / Published: 12 August 2017
PDF Full-text (3538 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208,
[...] Read more.
The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208, which is located next to the nucleophilic Ser-207 has a focal function in influencing substrate accessibility and flexibility of the catalytic pocket. Based on molecular dynamic simulations, it was found that Leu-208 strongly facilitates the lid 2 opening via its side-chain. The KM and Kcat/KM of L208A mutant were substrate dependent as it preferred a smaller-chain ester (pNP-caprylate) as compared to medium (pNP-laurate) or long-chain (pNP-palmitate) esters. In esterification of ethyl hexanoate, L208A promotes a higher ester conversion rate at 20 °C but not at 30 °C, as a 27% decline was observed. Interestingly, the wild-type (WT) lipase’s conversion rate was found to increase with a higher temperature. WT lipase AMS8 esterification was higher in toluene as compared to L208A. Hence, the results showed that Leu-208 of AMS8 lipase plays an important role in steering a broad range of substrates into its active site region by regulating the flexibility of this region. Leu-208 is therefore predicted to be crucial for its role in interfacial activation and catalysis in toluene. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Figure 1

Open AccessArticle Semi-Continuous Fermentation of Onion Vinegar and Its Functional Properties
Molecules 2017, 22(8), 1313; doi:10.3390/molecules22081313
Received: 23 July 2017 / Revised: 7 August 2017 / Accepted: 7 August 2017 / Published: 8 August 2017
PDF Full-text (1661 KB) | HTML Full-text | XML Full-text
Abstract
For the fermentation of vinegar using onion, acetic acid bacteria and yeast strains with high fermentation ability were screened. Among them, Saccharomyces cerevisiae 1026 was selected as a starter for ethanol production and Acetobacter orientalis MAK88 was selected as a vinegar producer. When
[...] Read more.
For the fermentation of vinegar using onion, acetic acid bacteria and yeast strains with high fermentation ability were screened. Among them, Saccharomyces cerevisiae 1026 was selected as a starter for ethanol production and Acetobacter orientalis MAK88 was selected as a vinegar producer. When the two-stage fermentation of onion vinegar was performed at 28 °C, the titratable acidity reached 4.80% at 24 h of fermentation. When semi-continuous fermentation proceeded to charge-discharge consisting of three cycles, the acetic acid content reached 4.35% at 48 h of fermentation. At this stage, the fermentation efficiency, acetic acid productivity, and specific product formation rate were 76.71%, 17.73 g/(L·d), and 20.58 g/(g·h), respectively. The process in this study significantly reduced the fermentation time and simplified the vinegar production process. The content of total flavonoids and total polyphenols in onion vinegar were 104.36 and 455.41 μg/mL, respectively. The antioxidant activities of onion vinegar in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS+) radical scavenging activity, and reducing power were 75.33%, 98.88%, and 1.28, respectively. The nitrite scavenging abilities of onion vinegar were 95.38 at pH 1.2. The onion vinegar produced in this study showed higher organoleptic acceptability than commercial onion vinegar. Full article
Figures

Figure 1

Open AccessArticle Antitumoural Sulphur and Selenium Heteroaryl Compounds: Thermal Characterization and Stability Evaluation
Molecules 2017, 22(8), 1314; doi:10.3390/molecules22081314
Received: 29 June 2017 / Accepted: 4 August 2017 / Published: 8 August 2017
PDF Full-text (5088 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The physicochemical properties of a compound play a crucial role in the cancer development process. In this context, polymorphism can become an important obstacle for the pharmaceutical industry because it frequently leads to the loss of therapeutic effectiveness of some drugs. Stability under
[...] Read more.
The physicochemical properties of a compound play a crucial role in the cancer development process. In this context, polymorphism can become an important obstacle for the pharmaceutical industry because it frequently leads to the loss of therapeutic effectiveness of some drugs. Stability under manufacturing conditions is also critical to ensure no undesired degradations or transformations occur. In this study, the thermal behaviour of 40 derivatives of a series of sulphur and selenium heteroaryl compounds with potential antitumoural activity were studied. In addition, the most promising cytotoxic derivatives were analysed by a combination of differential scanning calorimetry, X-ray diffraction and thermogravimetric techniques in order to investigate their polymorphism and thermal stability. Moreover, stability under acid, alkaline and oxidative media was tested. Degradation under stress conditions as well as the presence of polymorphism was found for the compounds VA6E and VA7J, which might present a hurdle to carrying on with formulation. On the contrary, these obstacles were not found for derivative VA4J. Full article
Figures

Figure 1

Open AccessArticle The Inhibitory Effects of Purple Sweet Potato Color on Hepatic Inflammation Is Associated with Restoration of NAD+ Levels and Attenuation of NLRP3 Inflammasome Activation in High-Fat-Diet-Treated Mice
Molecules 2017, 22(8), 1315; doi:10.3390/molecules22081315
Received: 14 June 2017 / Accepted: 3 August 2017 / Published: 8 August 2017
PDF Full-text (3391 KB) | HTML Full-text | XML Full-text
Abstract
Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, exhibits beneficial effects on metabolic syndrome. Sustained inflammation plays a crucial role in the pathogenesis of metabolic syndrome. Here we explored the effects of PSPC on high-fat diet (HFD)-induced hepatic inflammation and
[...] Read more.
Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, exhibits beneficial effects on metabolic syndrome. Sustained inflammation plays a crucial role in the pathogenesis of metabolic syndrome. Here we explored the effects of PSPC on high-fat diet (HFD)-induced hepatic inflammation and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + PSPC group, and PSPC group. PSPC was administered by daily oral gavage at doses of 700 mg/kg/day for 20 weeks. Nicotinamide riboside (NR) was used to increase NAD+ levels. Our results showed that PSPC effectively ameliorated obesity and liver injuries in HFD-fed mice. Moreover, PSPC notably blocked hepatic oxidative stress in HFD-treated mice. Furthermore, PSPC dramatically restored NAD+ level to abate endoplasmic reticulum stress (ER stress) in HFD-treated mouse livers, which was confirmed by NR treatment. Consequently, PSPC remarkably suppressed the nuclear factor-κB (NF-κB) p65 nuclear translocation and nucleotide oligomerization domain protein1/2 (NOD1/2) signaling in HFD-treated mouse livers. Thereby, PSPC markedly diminished the NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation, ultimately lowering the expressions of inflammation-related genes in HFD-treated mouse livers. In summary, PSPC protected against HFD-induced hepatic inflammation by boosting NAD+ level to inhibit NLRP3 inflammasome activation. Full article
Figures

Figure 1

Open AccessArticle Genetic Structure and Eco-Geographical Differentiation of Wild Sheep Fescue (Festuca ovina L.) in Xinjiang, Northwest China
Molecules 2017, 22(8), 1316; doi:10.3390/molecules22081316
Received: 18 July 2017 / Revised: 2 August 2017 / Accepted: 4 August 2017 / Published: 9 August 2017
PDF Full-text (3139 KB) | HTML Full-text | XML Full-text
Abstract
Glaciation and mountain orogeny have generated new ecologic opportunities for plants, favoring an increase in the speciation rate. Moreover, they also act as corridors or barriers for plant lineages and populations. High genetic diversity ensures that species are able to survive and adapt.
[...] Read more.
Glaciation and mountain orogeny have generated new ecologic opportunities for plants, favoring an increase in the speciation rate. Moreover, they also act as corridors or barriers for plant lineages and populations. High genetic diversity ensures that species are able to survive and adapt. Gene flow is one of the most important determinants of the genetic diversity and structure of out-crossed species, and it is easily affected by biotic and abiotic factors. The aim of this study was to characterize the genetic diversity and structure of an alpine species, Festuca ovina L., in Xinjiang, China. A total of 100 individuals from 10 populations were analyzed using six amplified fragment length polymorphism (AFLP) primer pairs. A total of 583 clear bands were generated, of which 392 were polymorphic; thus, the percentage of polymorphic bands (PPB) was 67.24%. The total and average genetic diversities were 0.2722 and 0.2006 (0.1686–0.2225), respectively. The unweighted group method with arithmetic mean (UPGMA) tree, principal coordinates analysis (PCoA) and Structure analyses revealed that these populations or individuals could be clustered into two groups. The analysis of molecular variance analysis (AMOVA) suggested that most of the genetic variance existed within a population, and the genetic differentiation (Fst) among populations was 20.71%. The Shannon differentiation coefficient (G’st) among populations was 0.2350. Limited gene flow (Nm = 0.9571) was detected across all sampling sites. The Fst and Nm presented at different levels under the genetic barriers due to fragmentation. The population genetic diversity was significant relative to environmental factors such as temperature, altitude and precipitation. Full article
(This article belongs to the Section Molecular Diversity)
Figures

Figure 1

Open AccessArticle Interaction of Flavonoids from Woodwardia unigemmata with Bovine Serum Albumin (BSA): Application of Spectroscopic Techniques and Molecular Modeling Methods
Molecules 2017, 22(8), 1317; doi:10.3390/molecules22081317
Received: 6 July 2017 / Revised: 31 July 2017 / Accepted: 4 August 2017 / Published: 9 August 2017
PDF Full-text (5414 KB) | HTML Full-text | XML Full-text
Abstract
Phytochemical investigation on the methanol extract of Woodwardia unigemmata resulted in the isolation of seven flavonoids, including one new flavonol acylglycoside (1). The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis and comparison of literature data.
[...] Read more.
Phytochemical investigation on the methanol extract of Woodwardia unigemmata resulted in the isolation of seven flavonoids, including one new flavonol acylglycoside (1). The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis and comparison of literature data. The multidrug resistance (MDR) reversing activity was evaluated for the isolated compounds using doxorubicin-resistant K562/A02 cells model. Compound 6 showed comparable MDR reversing effect to verapamil. Furthermore, the interaction between compounds and bovine serum albumin (BSA) was investigated by spectroscopic methods, including steady-state fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular docking approach. The experimental results indicated that the seven flavonoids bind to BSA by static quenching mechanisms. The negative ΔH and ΔS values indicated that van der Waals interactions and hydrogen bonds contributed in the binding of compounds 26 to BSA. In the case of compounds 1 and 7 systems, the hydrophobic interactions play a major role. The binding of compounds to BSA causes slight changes in the secondary structure of BSA. There are two binding sites of compound 6 on BSA and site I is the main site according to the molecular docking studies and the site marker competitive binding assay. Full article
(This article belongs to the Special Issue Natural Products: Anticancer Potential and Beyond)
Figures

Open AccessArticle Transcriptional Responses of Creeping Bentgrass to 2,3-Butanediol, a Bacterial Volatile Compound (BVC) Analogue
Molecules 2017, 22(8), 1318; doi:10.3390/molecules22081318 (registering DOI)
Received: 7 July 2017 / Revised: 27 July 2017 / Accepted: 5 August 2017 / Published: 16 August 2017
PDF Full-text (3821 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Bacterial volatile compounds (BVCs) have been reported to enhance plant growth and elicit plant defenses against fungal infection and insect damage. The objective of this study was to determine transcriptomic changes in response to synthetic BVC that could be associated with plant resistance
[...] Read more.
Bacterial volatile compounds (BVCs) have been reported to enhance plant growth and elicit plant defenses against fungal infection and insect damage. The objective of this study was to determine transcriptomic changes in response to synthetic BVC that could be associated with plant resistance to Rhizoctonia solani in creeping bentgrass. The 2,3-butanediol (BD) (250 µM) was sprayed on creeping bentgrass leaves grown in jam jars. The result showed that synthetic BD induced plant defense against R. solani for creeping bentgrass. Transcriptomic analysis demonstrated that more genes were repressed by BD while less showed up-regulation. BD suppressed the expression of some regular stress-related genes in creeping bentgrass, such as pheromone activity, calcium channel activity, photosystem II oxygen evolving complex, and hydrolase activity, while up-regulated defense related transcription factors (TFs), such as basic helix-loop-helix (bHLH) TFs, cysteine2-cysteine2-contans-like (C2C2-CO) and no apical meristem TFs (NAC). Other genes related to disease resistance, such as jasmonic acid (JA) signaling, leucine rich repeats (LRR)-transmembrane protein kinase, pathogen-related (PR) gene 5 receptor kinase and nucleotide binding site-leucine rich repeats (NBS-LRR) domain containing plant resistance gene (R-gene) were also significantly up-regulated. These results suggest that BD may induce changes to the plant transcriptome in induced systemic resistance (ISR) pathways. Full article
Figures

Figure 1

Open AccessArticle Cytotoxic and Antiviral Triterpenoids from the Mangrove Plant Sonneratia paracaseolaris
Molecules 2017, 22(8), 1319; doi:10.3390/molecules22081319
Received: 18 July 2017 / Revised: 2 August 2017 / Accepted: 7 August 2017 / Published: 9 August 2017
PDF Full-text (839 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A chemical investigation was conducted on the aerial parts of the mangrove plant Sonneratia paracaseolaris, yielding five new triterpenoid paracaseolins A–E (14, and 11) together with twelve known analogues (510, 12
[...] Read more.
A chemical investigation was conducted on the aerial parts of the mangrove plant Sonneratia paracaseolaris, yielding five new triterpenoid paracaseolins A–E (14, and 11) together with twelve known analogues (510, 1217). Their structures were established by extensive spectroscopic methods and comparisons their spectroscopic data with those of the known related compounds. The cytotoxicities against P388, HeLa, A549, and K562 tumor cell lines and anti-H1N1 (Influenza A virus) activities for the isolates were evaluated. Compound 4 showed potent cytotoxicity against the A549 cell line with an IC50 value of 1.89 µM, and compound 1 exhibited significant anti-H1N1 virus activity with an IC50 value of 28.4 µg/mL. A preliminary structure activity relationship was discussed. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessFeature PaperArticle Enzymatic Synthesis of N-Acetyllactosamine (LacNAc) Type 1 Oligomers and Characterization as Multivalent Galectin Ligands
Molecules 2017, 22(8), 1320; doi:10.3390/molecules22081320
Received: 14 June 2017 / Revised: 7 August 2017 / Accepted: 8 August 2017 / Published: 10 August 2017
PDF Full-text (2327 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Repeats of the disaccharide unit N-acetyllactosamine (LacNAc) occur as type 1 (Galβ1, 3GlcNAc) and type 2 (Galβ1, 4GlcNAc) glycosylation motifs on glycoproteins and glycolipids. The LacNAc motif acts as binding ligand for lectins and is involved in many biological recognition events. To
[...] Read more.
Repeats of the disaccharide unit N-acetyllactosamine (LacNAc) occur as type 1 (Galβ1, 3GlcNAc) and type 2 (Galβ1, 4GlcNAc) glycosylation motifs on glycoproteins and glycolipids. The LacNAc motif acts as binding ligand for lectins and is involved in many biological recognition events. To the best of our knowledge, we present, for the first time, the synthesis of LacNAc type 1 oligomers using recombinant β1,3-galactosyltransferase from Escherichia coli and β1,3-N-acetylglucosaminyltranferase from Helicobacter pylori. Tetrasaccharide glycans presenting LacNAc type 1 repeats or LacNAc type 1 at the reducing or non-reducing end, respectively, were conjugated to bovine serum albumin as a protein scaffold by squarate linker chemistry. The resulting multivalent LacNAc type 1 presenting neo-glycoproteins were further studied for specific binding of the tumor-associated human galectin 3 (Gal-3) and its truncated counterpart Gal-3∆ in an enzyme-linked lectin assay (ELLA). We observed a significantly increased affinity of Gal-3∆ towards the multivalent neo-glycoprotein presenting LacNAc type 1 repeating units. This is the first evidence for differences in glycan selectivity of Gal-3∆ and Gal-3 and may be further utilized for tracing Gal-3∆ during tumor progression and therapy. Full article
(This article belongs to the Special Issue Synthesis and Biological Applications of Glycoconjugates)
Figures

Open AccessArticle Potential Development of Tumor-Targeted Oral Anti-Cancer Prodrugs: Amino Acid and Dipeptide Monoester Prodrugs of Gemcitabine
Molecules 2017, 22(8), 1322; doi:10.3390/molecules22081322
Received: 26 July 2017 / Revised: 4 August 2017 / Accepted: 5 August 2017 / Published: 10 August 2017
PDF Full-text (583 KB) | HTML Full-text | XML Full-text
Abstract
One of the main obstacles for cancer therapies is to deliver medicines effectively to target sites. Since stroma cells are developed around tumors, chemotherapeutic agents have to go through stroma cells in order to reach tumors. As a method to improve drug delivery
[...] Read more.
One of the main obstacles for cancer therapies is to deliver medicines effectively to target sites. Since stroma cells are developed around tumors, chemotherapeutic agents have to go through stroma cells in order to reach tumors. As a method to improve drug delivery to the tumor site, a prodrug approach for gemcitabine was adopted. Amino acid and dipeptide monoester prodrugs of gemcitabine were synthesized and their chemical stability in buffers, resistance to thymidine phosphorylase and cytidine deaminase, antiproliferative activity, and uptake/permeability in HFF cells as a surrogate to stroma cells were determined and compared to their parent drug, gemcitabine. The activation of all gemcitabine prodrugs was faster in pancreatic cell homogenates than their hydrolysis in buffer, suggesting enzymatic action. All prodrugs exhibited great stability in HFF cell homogenate, enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase, and deamination by cytidine deaminase compared to their parent drug. All gemcitabine prodrugs exhibited higher uptake in HFF cells and better permeability across HFF monolayers than gemcitabine, suggesting a better delivery to tumor sites. Cell antiproliferative assays in Panc-1 and Capan-2 pancreatic ductal cell lines indicated that the gemcitabine prodrugs were more potent than their parent drug gemcitabine. The transport and enzymatic profiles of gemcitabine prodrugs suggest their potential for delayed enzymatic bioconversion and enhanced resistance to metabolic enzymes, as well as for enhanced drug delivery to tumor sites, and cytotoxic activity in cancer cells. These attributes would facilitate the prolonged systemic circulation and improved therapeutic efficacy of gemcitabine prodrugs. Full article
(This article belongs to the Special Issue Peptide-Based Drugs and Drug Delivery Systems)
Figures

Figure 1

Open AccessArticle Phosphate-Linked Silibinin Dimers (PLSd): New Promising Modified Metabolites
Molecules 2017, 22(8), 1323; doi:10.3390/molecules22081323
Received: 14 July 2017 / Revised: 25 July 2017 / Accepted: 1 August 2017 / Published: 11 August 2017
PDF Full-text (3469 KB) | HTML Full-text | XML Full-text
Abstract
By exploiting the regioselective protection of the hydroxyl groups of silibinin along with the well-known phosphoramidite chemistry, we have developed an efficient strategy for the synthesis of new silibinin-modified species, which we have named Phosphate-Linked Silibinin Dimers (PLSd), in which the monomer units
[...] Read more.
By exploiting the regioselective protection of the hydroxyl groups of silibinin along with the well-known phosphoramidite chemistry, we have developed an efficient strategy for the synthesis of new silibinin-modified species, which we have named Phosphate-Linked Silibinin Dimers (PLSd), in which the monomer units are linked by phosphodiester bonds. The antioxidant abilities of the new PLSd were estimated on HepG2 cells using DPPH free radical scavenging and xanthine/xanthine oxidase assays. The new phosphate-metabolites showed a higher anti-oxidant activity than the silibinin, as well as very low toxicity. The ability to scavenge reactive oxygen species (ROS) such as singlet oxygen () and hydroxyl radical () reveals that the two dimers are able to scavenge about two times more effectively than silibinin. Finally, solubility studies have shown that the PLSd present good water solubility (more than 20 mg·L−1) under circumneutral pH values, whereas the silibinin was found to be very poorly soluble (less than 0.4 mg·L−1) and not stable under alkaline conditions. Together, the above promising results warrant further investigation of the future potential of the PLSd as anti-oxidant metabolites within the large synthetic polyphenols field. Full article
Figures

Figure 1

Open AccessArticle Research on a Nonwoven Fabric Made from Multi-Block Biodegradable Copolymer Based on l-Lactide, Glycolide, and Trimethylene Carbonate with Shape Memory
Molecules 2017, 22(8), 1325; doi:10.3390/molecules22081325
Received: 18 July 2017 / Revised: 1 August 2017 / Accepted: 8 August 2017 / Published: 10 August 2017
PDF Full-text (2192 KB) | HTML Full-text | XML Full-text
Abstract
The presented paper concerns scientific research on processing a poly(lactide-co-glycolide-co-trimethylene carbonate) copolymer (PLLAGLTMC) with thermally induced shape memory and a transition temperature around human body temperature. The material in the literature called terpolymer was used to produce smart, nonwoven
[...] Read more.
The presented paper concerns scientific research on processing a poly(lactide-co-glycolide-co-trimethylene carbonate) copolymer (PLLAGLTMC) with thermally induced shape memory and a transition temperature around human body temperature. The material in the literature called terpolymer was used to produce smart, nonwoven fabric with the melt blowing technique. Bioresorbable and biocompatible terpolymers with shape memory have been investigated for its medical applications, such as cardiovascular stents. There are several research studies on shape memory in polymers, but this phenomenon has not been widely studied in textile products made from shape memory polymers (SMPs). The current research aims to explore the characteristics of the PLLAGLTMC nonwoven fabric in detail and the mechanism of its shape memory behavior. In this study, the nonwoven fabric was subjected to thermo-mechanical, morphological, and shape memory analysis. The thermo-mechanical and structural properties were investigated by means of differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopic examination, and mercury porosimetry measurements. Eventually, the gathered results confirmed that the nonwoven fabric possessed characteristics that classified it as a smart material with potential applications in medicine. Full article
(This article belongs to the Special Issue Biomedical Applications of Polylactide (PLA) and its Copolymers)
Figures

Figure 1

Open AccessArticle Sequestration Effect on the Open-Cyclic Switchable Property of Warfarin Induced by Cyclodextrin: Time-Resolved Fluorescence Study
Molecules 2017, 22(8), 1326; doi:10.3390/molecules22081326
Received: 20 July 2017 / Revised: 6 August 2017 / Accepted: 8 August 2017 / Published: 11 August 2017
PDF Full-text (4477 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The excited-state lifetimes of the anticoagulant drug warfarin (W) in water and in the absence and presence of methyl-β-cyclodextrins (Me-β-CD) were recorded using time-resolved fluorescence measurements. Selective excitation of the open and cyclic protonated isomers of W were acquired with laser emitting diodes
[...] Read more.
The excited-state lifetimes of the anticoagulant drug warfarin (W) in water and in the absence and presence of methyl-β-cyclodextrins (Me-β-CD) were recorded using time-resolved fluorescence measurements. Selective excitation of the open and cyclic protonated isomers of W were acquired with laser emitting diodes (LED) producing 320 and 280 nm excitation pulses, respectively. Formation of the inclusion complex was checked by UV-visible absorption spectroscopy, and the values of binding constants (2.9 × 103 M–1 and 4.2 × 102 M−1 for protonated and deprotonated forms, respectively) were extracted from the spectrophotometric data. Both absorption and time-resolved fluorescence results established that the interior of the macromolecular host binds preferentially the open protonated form, red shifts the maximum of its absorption of light at ~305 nm, extends its excited-state lifetime, and decreases its emission quantum yield (ФF). Collectively, sequestration of the open guest molecules decreases markedly their radiative rate constants (kr), likely due to formation of hydrogen-bonded complexes in both the ground and excited states. Due to lack of interactions, no change was observed in the excited-state lifetime of the cyclic form in the presence of Me-β-CD. The host also increases the excited-state lifetime and ФF of the drug deprotonated form (W). These later findings could be attributed to the increased rigidity inside the cavity of Me-β-CD. The pKa values extracted from the variations of the UV-visible absorption spectra of W versus the pH of aqueous solution showed that the open isomer is more acidic in both ground and excited states. The positive shifts in pKa values induced by three derivatives of cyclodextrins: HE-β-CD, Ac-β-CD, and Me-β-CD supported the preferential binding of these hosts to open isomers over cyclic. Full article
(This article belongs to the Section Photochemistry)
Figures

Open AccessArticle UPLC-QTOF-MS Identification of the Chemical Constituents in Rat Plasma and Urine after Oral Administration of Rubia cordifolia L. Extract
Molecules 2017, 22(8), 1327; doi:10.3390/molecules22081327
Received: 30 June 2017 / Revised: 4 August 2017 / Accepted: 5 August 2017 / Published: 11 August 2017
PDF Full-text (2281 KB) | HTML Full-text | XML Full-text
Abstract
An effective ultra-performance liquid chromatography coupled with the quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF/MS) method was developed for analysing the chemical constituents in rat plasma and urine after the oral administration of Rubia cordifolia L. extract. Under the optimized conditions, nine of 11
[...] Read more.
An effective ultra-performance liquid chromatography coupled with the quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF/MS) method was developed for analysing the chemical constituents in rat plasma and urine after the oral administration of Rubia cordifolia L. extract. Under the optimized conditions, nine of 11 prototypes in rat plasma and four prototypes in urine were identified or characterized by comparing the retention time, accurate mass, fragmentation patterns, reference compounds, and literature data. In total, six metabolites, including alizarin-1-O-β-glucuronide, alizarin-2-O-β-glucuronide, alizarin-1-O-sulfation, alizarin-2-O-sulfation, purpurin-1-O-β-glucuronide, and purpurin-3-O-β-glucuronide, were identified in rat plasma, which were confirmed by lavaging standard solutions. Purpurin was found to be able to be transformed into alizarin based on the results in which alizarin was detected in rat plasma after the oral administration of a purpurin solution. In total, four metabolites were found in rat urine, but their chemical structures were not confirmed. The results indicate that the metabolic pathway of alizarin involves glucuronidation and sulfation, with the purpurins having undergone glucuronidation. The components absorbed into the blood, and the metabolites have the opportunity to become bioactive constituents. The experimental results would supply a helpful chemical basis for further research on the mechanism of actions of Rubia cordifolia L. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Asymmetric Michael Addition Organocatalyzed by α,β-Dipeptides under Solvent-Free Reaction Conditions
Molecules 2017, 22(8), 1328; doi:10.3390/molecules22081328
Received: 7 June 2017 / Revised: 24 July 2017 / Accepted: 27 July 2017 / Published: 10 August 2017
PDF Full-text (2524 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The application of six novel α,β-dipeptides as chiral organocatalysts in the asymmetric Michael addition reaction between enolizable aldehydes and N-arylmaleimides or nitroolefins is described. With N-arylmaleimides as substrates, the best results were achieved with dipeptide 2 as a catalyst in the
[...] Read more.
The application of six novel α,β-dipeptides as chiral organocatalysts in the asymmetric Michael addition reaction between enolizable aldehydes and N-arylmaleimides or nitroolefins is described. With N-arylmaleimides as substrates, the best results were achieved with dipeptide 2 as a catalyst in the presence of aq. NaOH. Whereas dipeptides 4 and 6 in conjunction with 4-dimethylaminopyridine (DMAP) and thiourea as a hydrogen bond donor proved to be highly efficient organocatalytic systems in the enantioselective reaction between isobutyraldehyde and various nitroolefins. Full article
(This article belongs to the collection Recent Advances in Organocatalysis)
Figures

Figure 1

Open AccessArticle Complete Chloroplast Genome Sequence and Phylogenetic Analysis of the Medicinal Plant Artemisia annua
Molecules 2017, 22(8), 1330; doi:10.3390/molecules22081330
Received: 23 June 2017 / Revised: 31 July 2017 / Accepted: 8 August 2017 / Published: 11 August 2017
PDF Full-text (6080 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The complete chloroplast genome of Artemisia annua (Asteraceae), the primary source of artemisinin, was sequenced and analyzed. The A. annua cp genome is 150,995 bp, and harbors a pair of inverted repeat regions (IRa and IRb), of 24,850 bp each that separate large
[...] Read more.
The complete chloroplast genome of Artemisia annua (Asteraceae), the primary source of artemisinin, was sequenced and analyzed. The A. annua cp genome is 150,995 bp, and harbors a pair of inverted repeat regions (IRa and IRb), of 24,850 bp each that separate large (LSC, 82,988 bp) and small (SSC, 18,267 bp) single-copy regions. Our annotation revealed that the A. annua cp genome contains 113 genes and 18 duplicated genes. The gene order in the SSC region of A. annua is inverted; this fact is consistent with the sequences of chloroplast genomes from three other Artemisia species. Fifteen (15) forward and seventeen (17) inverted repeats were detected in the genome. The existence of rich SSR loci in the genome suggests opportunities for future population genetics work on this anti-malarial medicinal plant. In A. annua cpDNA, the rps19 gene was found in the LSC region rather than the IR region, and the rps19 pseudogene was absent in the IR region. Sequence divergence analysis of five Asteraceae species indicated that the most highly divergent regions were found in the intergenic spacers, and that the differences between A. annua and A. fukudo were very slight. A phylogenetic analysis revealed a sister relationship between A. annua and A. fukudo. This study identified the unique characteristics of the A. annua cp genome. These results offer valuable information for future research on Artemisia species identification and for the selective breeding of A. annua with high pharmaceutical efficacy. Full article
Figures

Figure 1

Open AccessArticle Anti-Anxiety Effect of (−)-Syringaresnol-4-O-β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside from Albizzia julibrissin Durazz (Leguminosae)
Molecules 2017, 22(8), 1331; doi:10.3390/molecules22081331
Received: 4 July 2017 / Revised: 4 August 2017 / Accepted: 10 August 2017 / Published: 11 August 2017
PDF Full-text (1458 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Albizzia julibrissin Durazz, a Chinese Medicine, is commonly used for its anti-anxiety effects. (−)-syringaresnol-4-O-β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside (SAG) is the main ingredient of Albizzia julibrissin Durazz. The present study investigated the anxiolytic effect and potential mechanisms on the HPA axis
[...] Read more.
Albizzia julibrissin Durazz, a Chinese Medicine, is commonly used for its anti-anxiety effects. (−)-syringaresnol-4-O-β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside (SAG) is the main ingredient of Albizzia julibrissin Durazz. The present study investigated the anxiolytic effect and potential mechanisms on the HPA axis and monoaminergic systems of SAG on acute restraint-stressed rats. The anxiolytic effect of SAG was examined through an open field test and an elevated plus maze test. The concentration of CRF, ACTH, and CORT in plasma was examined by an enzyme-linked immune sorbent assay (ELISA) kit while neurotransmitters in the cerebral cortex and hippocampus of the brain were examined by High Performance Liquid Chromatography (HPLC). We show that repeated treatment with SAG (3.6 mg/kg, p.o.) significantly increased the number and time spent on the central entries in the open-field test when compared to the vehicle/stressed group. In the elevated plus maze test, 3.6 mg/kg SAG could increase the percentage of entries into and time spent on the open arms of the elevated plus maze. In addition, the concentration of CRF, ACTH, and CORT in plasma and neurotransmitters (NE, 5-HT, DA and their metabolites 5-HIAA, DOPAC, and HVA) in the cerebral cortex and hippocampus of the brain were decreased after SAG treatment, as compared to the repeated acute restraint-stressed rats. These results suggest that SAG is a potential anti-anxiety drug candidate. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Figure 1

Open AccessArticle Effect of 2,6-Bis-(1-hydroxy-1,1-diphenyl-methyl) Pyridine as Organic Additive in Sulfide NiMoP/γ-Al2O3 Catalyst for Hydrodesulfurization of Straight-Run Gas Oil
Molecules 2017, 22(8), 1332; doi:10.3390/molecules22081332
Received: 13 July 2017 / Revised: 2 August 2017 / Accepted: 4 August 2017 / Published: 15 August 2017
PDF Full-text (5644 KB) | HTML Full-text | XML Full-text
Abstract
The effect of 2,6-bis-(1-hydroxy-1,1-diphenyl-methyl) pyridine (BDPHP) in the preparation of NiMoP/γ-Al2O3 catalysts have been investigated in the hydrodesulfurization (HDS) of straight-run gas oil. The γ-Al2O3 support was modified by surface impregnation of a solution of BDPHP to
[...] Read more.
The effect of 2,6-bis-(1-hydroxy-1,1-diphenyl-methyl) pyridine (BDPHP) in the preparation of NiMoP/γ-Al2O3 catalysts have been investigated in the hydrodesulfurization (HDS) of straight-run gas oil. The γ-Al2O3 support was modified by surface impregnation of a solution of BDPHP to afford BDPHP/Ni molar ratios (0.5 and 1.0) in the final composition. The highest activity for NiMoP materials was found when the molar ratio of BDPHP/Ni was of 0.5. X-ray diffraction (XRD) results revealed that NiMoP (0.5) showed better dispersion of MoO3 than the NiMoP (1.0). Fourier transform infrared spectroscopy (FT-IR) results indicated that the organic additive interacts with the γ-Al2O3 surface and therefore discards the presence of Mo or Ni complexes. Raman spectroscopy suggested a high Raman ratio for the NiMoP (0.5) sample. The increment of the Mo=O species is related to a major availability of Mo species in the formation of MoS2. The temperature programmed reduction (TPR) results showed that the NiMoP (0.5) displayed moderate metal–support interaction. Likewise, X-ray photoelectron spectroscopy (XPS) exhibited higher sulfurization degree for NiMoP (0.5) compared with NiMoP (1.0). The increment of the MoO3 dispersion, the moderate metal–support interaction, the increase of sulfurization degree and the increment of Mo=O species provoked by the BDPHP incorporation resulted in a higher gas oil HDS activity. Full article
(This article belongs to the Special Issue Bimetallic Catalysis)
Figures

Figure 1

Open AccessArticle Readily Available Chiral Benzimidazoles-Derived Guanidines as Organocatalysts in the Asymmetric α-Amination of 1,3-Dicarbonyl Compounds
Molecules 2017, 22(8), 1333; doi:10.3390/molecules22081333
Received: 25 July 2017 / Revised: 7 August 2017 / Accepted: 9 August 2017 / Published: 11 August 2017
PDF Full-text (1145 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The synthesis and the evaluation as organocatalysts of new chiral guanidines derived from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using di-t-butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized through the reaction of 2-chlorobezimidazole and a
[...] Read more.
The synthesis and the evaluation as organocatalysts of new chiral guanidines derived from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using di-t-butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized through the reaction of 2-chlorobezimidazole and a chiral amine in moderate-to-good yields. Among all of them, those derived from (R)-1-phenylethan-1-amine (1) and (S)-1-(2-naphthyl)ethan-1-amine (3) turned out to be the most efficient for such asymmetric transformation, rendering good-to-high yields and moderate-to-good enantioselectivities for the amination products. Full article
(This article belongs to the collection Recent Advances in Organocatalysis)
Figures

Figure 1

Open AccessArticle Human Adenocarcinoma Cell Line Sensitivity to Essential Oil Phytocomplexes from Pistacia Species: a Multivariate Approach
Molecules 2017, 22(8), 1336; doi:10.3390/molecules22081336
Received: 12 July 2017 / Revised: 8 August 2017 / Accepted: 8 August 2017 / Published: 11 August 2017
PDF Full-text (2821 KB) | HTML Full-text | XML Full-text
Abstract
Principal component analysis (PCA) multivariate analysis was applied to study the cytotoxic activity of essential oils from various species of the Pistacia genus on human tumor cell lines. In particular, the cytotoxic activity of essential oils obtained from P. lentiscus, P. lentiscus
[...] Read more.
Principal component analysis (PCA) multivariate analysis was applied to study the cytotoxic activity of essential oils from various species of the Pistacia genus on human tumor cell lines. In particular, the cytotoxic activity of essential oils obtained from P. lentiscus, P. lentiscus var. chia (mastic gum), P. terebinthus, P. vera, and P. integerrima, was screened on three human adenocarcinoma cell lines: MCF-7 (breast), 2008 (ovarian), and LoVo (colon). The results indicate that all the Pistacia phytocomplexes, with the exception of mastic gum oil, induce cytotoxic effects on one or more of the three cell lines. PCA highlighted the presence of different cooperating clusters of bioactive molecules. Cluster variability among species, and even within the same species, could explain some of the differences seen among samples suggesting the presence of both common and species-specific mechanisms. Single molecules from one of the most significant clusters were tested, but only bornyl-acetate presented cytotoxic activity, although at much higher concentrations (IC50 = 138.5 µg/mL) than those present in the essential oils, indicating that understanding of the full biological effect requires a holistic vision of the phytocomplexes with all its constituents. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Portuguese Honeys from Different Geographical and Botanical Origins: A 4-Year Stability Study Regarding Quality Parameters and Antioxidant Activity
Molecules 2017, 22(8), 1338; doi:10.3390/molecules22081338
Received: 18 July 2017 / Revised: 8 August 2017 / Accepted: 9 August 2017 / Published: 11 August 2017
PDF Full-text (906 KB) | HTML Full-text | XML Full-text
Abstract
Portuguese honeys (n = 15) from different botanical and geographical origins were analysed regarding their quality parameters (diastase activity, hydroxymethylfurfural content, moisture and pH), colour (L*, a*, b*) and antioxidant profile (total phenolics content, total flavonoids content, DPPH• scavenging activity, and ferric reducing
[...] Read more.
Portuguese honeys (n = 15) from different botanical and geographical origins were analysed regarding their quality parameters (diastase activity, hydroxymethylfurfural content, moisture and pH), colour (L*, a*, b*) and antioxidant profile (total phenolics content, total flavonoids content, DPPH• scavenging activity, and ferric reducing power). The samples were analysed fresh and after 4-years of storage (at 25 °C and protected from light). The hydroxymethylfurfural content and diastase activity of the fresh samples were in accordance with the recommended values described in the legislation. In general, the antioxidant activity of the samples correlated more with the bioactive compounds content than with colour. The storage affected differently each individual sample, especially regarding the antioxidant profile. Nevertheless, although in general the lightness of the samples decreased (and the redness increased), after 4 years, 11 samples still presented acceptable diastase activity and hydroxymethylfurfural values. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Open AccessArticle Chemometric Analysis of Lavender Essential Oils Using Targeted and Untargeted GC-MS Acquired Data for the Rapid Identification and Characterization of Oil Quality
Molecules 2017, 22(8), 1339; doi:10.3390/molecules22081339
Received: 21 July 2017 / Revised: 8 August 2017 / Accepted: 8 August 2017 / Published: 11 August 2017
PDF Full-text (1130 KB) | HTML Full-text | XML Full-text
Abstract
Standard raw material test methods such as the ISO Standard 11024 are focused on the identification of lavender oil and not the actual class/quality of the oil. However, the quality of the oil has a significant effect on its price at market. As
[...] Read more.
Standard raw material test methods such as the ISO Standard 11024 are focused on the identification of lavender oil and not the actual class/quality of the oil. However, the quality of the oil has a significant effect on its price at market. As such, there is a need for raw material tests to identify not only the type of oil but its quality. This paper describes two approaches to rapidly identifying and classifying lavender oil. First, the ISO Standard 11024 test method was evaluated in order to determine its suitability to assess lavender oil quality but due to its targeted and simplistic approach, it has the potential to miss classify oil quality. Second, utilizing the data generated by the ISO Standard 11024 test methodology, an untargeted chemometric predicative model was developed in order to rapidly assess and characterize lavender oils (Lavandula angustifolia L.) for geographical/environmental adulteration that impact quality. Of the 170 compounds identified as per the ISO Standard 11024 test method utilizing GC-MS analyses, 15 unique compounds that greatly differentiate between the two classes of lavender were identified. Using these 15 compounds, a predicative multivariate chemometric model was developed that enabled lavender oil samples to be reliably differentiated based on quality. A misclassification analysis was performed and it was found that the predictions were sound (100% matching rate). Such an approach will enable producers, distributers, suppliers and manufactures to rapidly screen lavender essential oil. The authors concede that the validation and implementation of such an approach is more difficult than a conventional chromatographic assay. However, the rapid, reliable and less problematic screening is vastly superior and easily justifies any early implementation validation difficulties and costs. Full article
Figures

Figure 1

Open AccessArticle 7-Dialkylaminocoumarin Oximates: Small Molecule Fluorescent “Turn-On” Chemosensors for Low-Level Water Content in Aprotic Organic Solvents
Molecules 2017, 22(8), 1340; doi:10.3390/molecules22081340
Received: 14 July 2017 / Revised: 9 August 2017 / Accepted: 11 August 2017 / Published: 12 August 2017
PDF Full-text (3517 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The water sensing properties of two efficient two-component fluorescent “turn-on” chemo-sensors based on the 7-dialkylaminocoumarin oxime acid-base equilibrium were investigated. Interestingly, although simple frontier orbital analysis predicts an intramolecular photoinduced electron transfer quenching pathway in conjugated oximates, TD-DFT (Time-dependent density functional theory) quantum
[...] Read more.
The water sensing properties of two efficient two-component fluorescent “turn-on” chemo-sensors based on the 7-dialkylaminocoumarin oxime acid-base equilibrium were investigated. Interestingly, although simple frontier orbital analysis predicts an intramolecular photoinduced electron transfer quenching pathway in conjugated oximates, TD-DFT (Time-dependent density functional theory) quantum chemical calculations support non-radiative dark S1 excited state deactivation as a fluorescence quenching mechanism. Due to the acid-base sensing mechanism and sensitive “turn-on” fluorescent response, both studied coumarin aldoxime chemosensors exhibit rapid response to low-level water content in polar aprotic solvents, with detection limits comparable to chemodosimeters or chemosensors based on interpolymer π-stacking aggregation. Full article
(This article belongs to the Section Photochemistry)
Figures

Open AccessArticle A Pectic Polysaccharide from Sijunzi Decoction Promotes the Antioxidant Defenses of SW480 Cells
Molecules 2017, 22(8), 1341; doi:10.3390/molecules22081341
Received: 28 July 2017 / Revised: 9 August 2017 / Accepted: 11 August 2017 / Published: 12 August 2017
PDF Full-text (1432 KB) | HTML Full-text | XML Full-text
Abstract
Sijunzi Decoction (SJZD) is a formula used for the treatment of spleen deficiency and gastrointestinal diseases in Traditional Chinese Medicine. Polysaccharides are reported to be the main components of SJZD responsible for its bio-functions. However, highly purified and clearly characterized polysaccharides from SJZD
[...] Read more.
Sijunzi Decoction (SJZD) is a formula used for the treatment of spleen deficiency and gastrointestinal diseases in Traditional Chinese Medicine. Polysaccharides are reported to be the main components of SJZD responsible for its bio-functions. However, highly purified and clearly characterized polysaccharides from SJZD are not well described. Here we obtained a purified polysaccharide (SJZDP-II-I) from SJZD using ion exchange chromatography and gel filtration. Structure analysis by FT-IR and NMR identified SJZDP-II-I as a typical pectic polysaccharide with homogalacturonan and rhamnogalacturonan type I regions and arabinogalactan type I and II as side chains. In vitro studies indicated that SJZDP-II-I treatment could significantly enhance the total antioxidant capacity of SW480 cells, resulting from the promoted expressions of antioxidant enzymes and their master regulator PGC-1α, which would be valuable for further research and applications. Full article
(This article belongs to the Special Issue Advances in Natural Polysaccharides Research)
Figures

Figure 1

Open AccessArticle Predicting and Interpreting the Structure of Type IV Pilus of Electricigens by Molecular Dynamics Simulations
Molecules 2017, 22(8), 1342; doi:10.3390/molecules22081342
Received: 30 June 2017 / Revised: 7 August 2017 / Accepted: 10 August 2017 / Published: 12 August 2017
PDF Full-text (4254 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Nanowires that transfer electrons to extracellular acceptors are important in organic matter degradation and nutrient cycling in the environment. Geobacter pili of the group of Type IV pilus are regarded as nanowire-like biological structures. However, determination of the structure of pili remains challenging
[...] Read more.
Nanowires that transfer electrons to extracellular acceptors are important in organic matter degradation and nutrient cycling in the environment. Geobacter pili of the group of Type IV pilus are regarded as nanowire-like biological structures. However, determination of the structure of pili remains challenging due to the insolubility of monomers, presence of surface appendages, heterogeneity of the assembly, and low-resolution of electron microscopy techniques. Our previous study provided a method to predict structures for Type IV pili. In this work, we improved on our previous method using molecular dynamics simulations to optimize structures of Neisseria gonorrhoeae (GC), Neisseria meningitidis and Geobacter uraniireducens pilus. Comparison between the predicted structures for GC and Neisseria meningitidis pilus and their native structures revealed that proposed method could predict Type IV pilus successfully. According to the predicted structures, the structural basis for conductivity in G.uraniireducens pili was attributed to the three N-terminal aromatic amino acids. The aromatics were interspersed within the regions of charged amino acids, which may influence the configuration of the aromatic contacts and the rate of electron transfer. These results will supplement experimental research into the mechanism of long-rang electron transport along pili of electricigens. Full article
(This article belongs to the Special Issue Computational Analysis for Protein Structure and Interaction)
Figures

Figure 1

Open AccessFeature PaperArticle BILP-19—An Ultramicroporous Organic Network with Exceptional Carbon Dioxide Uptake
Molecules 2017, 22(8), 1343; doi:10.3390/molecules22081343
Received: 16 July 2017 / Revised: 6 August 2017 / Accepted: 8 August 2017 / Published: 12 August 2017
PDF Full-text (1661 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Porous benzimidazole-based polymers (BILPs) have proven to be promising for carbon dioxide capture and storage. The polarity of their chemical structure in combination with an inherent porosity allows for adsorbing large amounts of carbon dioxide in combination with high selectivities over unpolar guest
[...] Read more.
Porous benzimidazole-based polymers (BILPs) have proven to be promising for carbon dioxide capture and storage. The polarity of their chemical structure in combination with an inherent porosity allows for adsorbing large amounts of carbon dioxide in combination with high selectivities over unpolar guest molecules such as methane and nitrogen. For this reason, among purely organic polymers, BILPs contain some of the most effective networks to date. Nevertheless, they are still outperformed by competitive materials such as metal-organic frameworks (MOFs) or metal doped porous polymers. Here, we report the synthesis of BILP-19 and its exceptional carbon dioxide uptake of up to 6 mmol•g−1 at 273 K, making the network comparable to state-of-the-art materials. BILP-19 precipitates in a particulate structure with a strongly anisotropic growth into platelets, indicating a sheet-like structure for the network. It exhibits only a small microporous but a remarkable ultra-microporous surface area of 144 m2•g−1 and 1325 m2•g−1, respectively. We attribute the exceptional uptake of small guest molecules such as carbon dioxide and water to the distinct ultra-microporosity. Additionally, a pronounced hysteresis for both guests is observed, which in combination with the platelet character is probably caused by an expansion of the interparticle space, creating additional accessible ultra-microporous pore volume. For nitrogen and methane, this effect does not occur which explains their low affinity. In consequence, Henry selectivities of 123 for CO2/N2 at 298 K and 12 for CO2/CH4 at 273 K were determined. The network was carefully characterized with solid-state nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, thermal gravimetry (TG) and elemental analyses as well as physisorption experiments with Ar, N2, CO2, CH4 and water. Full article
(This article belongs to the Special Issue Covalent Organic Frameworks and Related Porous Organic Materials)
Figures

Figure 1

Open AccessCommunication Fenton Discoloration of Ultrasonicated Purple Cactus Pear Juice
Molecules 2017, 22(8), 1344; doi:10.3390/molecules22081344
Received: 30 June 2017 / Revised: 31 July 2017 / Accepted: 9 August 2017 / Published: 15 August 2017
PDF Full-text (1220 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this study was to evaluate the stability of color, betaxanthin, and betacyanin pigments in the presence of Cu(II)-dependent hydroxyl radicals (HO•) from ultrasonicated purple cactus pear juice at amplitudes of 40%, 60%, and 80%, in comparison to untreated sample. L*
[...] Read more.
The aim of this study was to evaluate the stability of color, betaxanthin, and betacyanin pigments in the presence of Cu(II)-dependent hydroxyl radicals (HO•) from ultrasonicated purple cactus pear juice at amplitudes of 40%, 60%, and 80%, in comparison to untreated sample. L* parameter of juice treated at 40% and 80% amplitude for 25 and 15 min, respectively (11.3 and 9.3, respectively), were significantly higher compared to the control; b* and hue parameters of juice treated at 80%, 25 min showed values of 1.7 and 0.1, respectively. Color differences (ΔE) were lower (<3) for juices treated at high amplitude (80%) and short times (3–5 min). Juice treated at 40% 15 min, 60% 25 min, 80% 15 and 25 min presented high values of betacyanins (281.7 mg·L−1, 255.9 mg·L−1, 294.4 mg·L−1, and 276.7 mg·L−1, respectively). Betaxanthin values were higher in the juices treated at 40% 5 min and 80% 15 and 25 min (154.2 mg·L−1, 135.2 mg·L−1, and 128.5 mg·L−1, respectively). Purple cactus pear juice exhibited significant chelating activity of copper ions and great stability when exposed to HO•. Full article
Figures

Figure 1

Open AccessArticle Inhibitors of the Detoxifying Enzyme of the Phytoalexin Brassinin Based on Quinoline and Isoquinoline Scaffolds
Molecules 2017, 22(8), 1345; doi:10.3390/molecules22081345
Received: 17 July 2017 / Accepted: 8 August 2017 / Published: 14 August 2017
PDF Full-text (2546 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The detoxification of the phytoalexin brassinin to indole-3-carboxaldehyde and S-methyl dithiocarbamate is catalyzed by brassinin oxidase (BOLm), an inducible fungal enzyme produced by the plant pathogen Leptosphaeria maculans. Twenty-six substituted quinolines and isoquinolines are synthesized and evaluated for antifungal activity against
[...] Read more.
The detoxification of the phytoalexin brassinin to indole-3-carboxaldehyde and S-methyl dithiocarbamate is catalyzed by brassinin oxidase (BOLm), an inducible fungal enzyme produced by the plant pathogen Leptosphaeria maculans. Twenty-six substituted quinolines and isoquinolines are synthesized and evaluated for antifungal activity against L. maculans and inhibition of BOLm. Eleven compounds that inhibit BOLm activity are reported, of which 3-ethyl-6-phenylquinoline displays the highest inhibitory effect. In general, substituted 3-phenylquinolines show significantly higher inhibitory activities than the corresponding 2-phenylquinolines. Overall, these results indicate that the quinoline scaffold is a good lead to design paldoxins (phytoalexin detoxification inhibitors) that inhibit the detoxification of brassinin by L. maculans. Full article
Figures

Figure 1

Open AccessArticle ADP-ribosyl-N3: A Versatile Precursor for Divergent Syntheses of ADP-ribosylated Compounds
Molecules 2017, 22(8), 1346; doi:10.3390/molecules22081346
Received: 29 June 2017 / Revised: 11 August 2017 / Accepted: 11 August 2017 / Published: 14 August 2017
PDF Full-text (1244 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Adenosine diphosphate-ribose (ADP-ribose) and its derivatives play important roles in a series of complex physiological procedures. The design and synthesis of artificial ADP-ribosylated compounds is an efficient way to develop valuable chemical biology tools and discover new drug candidates. However, the synthesis of
[...] Read more.
Adenosine diphosphate-ribose (ADP-ribose) and its derivatives play important roles in a series of complex physiological procedures. The design and synthesis of artificial ADP-ribosylated compounds is an efficient way to develop valuable chemical biology tools and discover new drug candidates. However, the synthesis of ADP-ribosylated compounds is currently difficult due to structural complexity, easily broken pyrophosphate bond and high hydrophilicity. In this paper, ADP-ribosyl-N3 was designed and synthesized for the first time. With ADP-ribosyl-N3 as the key precursor, a divergent post-modification strategy was developed to prepare structurally diverse ADP-ribosylated compounds including novel nucleotides and peptides bearing ADP-ribosyl moieties. Full article
Figures

Figure 1

Open AccessArticle Synthesis and Evaluation of Novel Benzofuran Derivatives as Selective SIRT2 Inhibitors
Molecules 2017, 22(8), 1348; doi:10.3390/molecules22081348
Received: 10 July 2017 / Revised: 6 August 2017 / Accepted: 8 August 2017 / Published: 14 August 2017
PDF Full-text (1249 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of benzofuran derivatives were designed and synthesized, and their inhibitory activites were measured against the SIRT1–3. The enzymatic assay showed that all the compounds showed certain anti-SIRT2 activity and selective over SIRT1 and SIRT3 with IC50 (half maximal inhibitory concentration)
[...] Read more.
A series of benzofuran derivatives were designed and synthesized, and their inhibitory activites were measured against the SIRT1–3. The enzymatic assay showed that all the compounds showed certain anti-SIRT2 activity and selective over SIRT1 and SIRT3 with IC50 (half maximal inhibitory concentration) values at the micromolar level. The preliminary structure–activity relationships were analyzed and the binding features of compound 7e (IC50 3.81 µM) was predicted using the CDOCKER program. The results of this research could provide informative guidance for further optimizing benzofuran derivatives as potent SIRT2 inhibitors. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Inositol Derivatives and Phenolic Compounds from the Roots of Taraxacum coreanum
Molecules 2017, 22(8), 1349; doi:10.3390/molecules22081349
Received: 30 June 2017 / Revised: 13 August 2017 / Accepted: 13 August 2017 / Published: 14 August 2017
PDF Full-text (1051 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, the characterization of chemical constituents and biological activity of the roots of Taraxacum coreanum (Asteraceae) was attempted. Phytochemical investigation of the roots of T. coreanum led to the isolation of two new inositol derivatives, taraxinositols A (1) and
[...] Read more.
In this study, the characterization of chemical constituents and biological activity of the roots of Taraxacum coreanum (Asteraceae) was attempted. Phytochemical investigation of the roots of T. coreanum led to the isolation of two new inositol derivatives, taraxinositols A (1) and B (2), and a new phenolic compound, taraxinol (16), together with twenty known compounds including four inositol derivatives, neo-inositol-1,4-bis (4-hydroxybenzeneacetate) (3), chiro-inositol-1,5-bis(4- hydroxybenzeneacetate) (4), chiro-inositol-2,3-bis (4-hydroxybenzeneacetate) (5) and chiro-inositol- 1,2,3-tris (4-hydroxybenzeneacetate) (6), nine phenolic compounds: p-hydroxybenzaldehyde (7), vanillin (8), syringaldehyde (9), vanillic acid (10), 4-methoxyphenylacetic acid (11), 4-hydroxy- phenylacetic acid methyl ester (12), optivanin (13), isoferulic acid (14) and dihydroconiferyl alcohol (15), four coumarins: nodakenetin (17), decursinol (18), prangol (19) and isobyakangelicin (20), and three lignans: syringaresinol-4′-O-β-d-glucoside (21), syringaresinol (22), and pinoresinol (23). The structures of isolated compounds were determined on the basis of spectroscopic analysis. Among the isolated compounds, vanillic acid, isoferulic acid and syringaresinol showed radical scavenging activity with IC50 values ranging from 30.4 to 75.2 μM. Full article
Figures

Figure 1

Open AccessArticle Two New Tetravacant Organometallic Keggin-Type Heteropolyoxomolybdates-Supported Manganese Carbonyl Derivatives
Molecules 2017, 22(8), 1351; doi:10.3390/molecules22081351
Received: 11 July 2017 / Revised: 9 August 2017 / Accepted: 9 August 2017 / Published: 14 August 2017
PDF Full-text (5284 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two novel heteropolyoxomolybdate [XMo8O31]n− (X = Ge(1) or P(2)) manganese carbonyl derivatives [(CH3)4N]6H6{MnII(GeMo8O31)[MnI(CO)3]2}2
[...] Read more.
Two novel heteropolyoxomolybdate [XMo8O31]n− (X = Ge(1) or P(2)) manganese carbonyl derivatives [(CH3)4N]6H6{MnII(GeMo8O31)[MnI(CO)3]2}2·12H2O (1) and [(CH3)4N]4H6{MnII(PMo8O31)[MnI(CO)3]2}2·14H2O (2), have been successfully synthesized and characterized in the solid state by single crystal X-ray diffraction, IR and thermogravimetric analysis, and in solution by UV-Vis spectroscopy and electrochemistry. The two polyoxomolybdate-based organometallic compounds 1 and 2 represent rare examples of transition metal sandwich-based polyoxometalate metal carbonyl derivatives (PMCDs), in which the organic-inorganic hybrids are composed of four Mn(CO)3+ groups symmetrically occupied the tetravacant sites of dimeric heteropolyoxomolybdate {Mn2(XMo8O31)2}n− through MnI-O-Mo bonds. The carbonyl functionalized Mn atoms are octahedrally coordinated via three μ2-oxygens of the [XMo8O31]n− unit and three carbonyl carbon atoms. Interestingly, 1 and 2 form a psedocuboidal ring Mn(CO)3Mo3O12 with {Mn(CO)3}+ occupying the three fold axis of the Mo3O12 octahedral triad. Beside this, the two centrally placed adjacent MnII atoms show intramolecular Mn∙∙∙Mn interactions of 3.11 and 3.16 Å in 1 and 2, respectively. Significant n→π* and O···O intermolecular interactions between the orthogonally aligned adjacent carbonyl groups through the overlap of lone-pair electrons on oxygen atoms with the antibonding orbital (π*) of the adjacent carbony carbon atom of the subsequent units in 1 and 2 were observed. The electrochemical properties of the two compounds were also been investigated. Full article
(This article belongs to the Section Organometallic Chemistry)
Figures

Figure 1