molecules-logo

Journal Browser

Journal Browser

Herbal Remedies Meet Modern Day Medicine: Challenges and Opportunities

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: closed (10 July 2017) | Viewed by 75785

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biology and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
Interests: cancer therapy; medicinal plant; chemotherapy; chemoprevention
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

For a long time, herbal medicine has been prepared, synthesized, and used as therapeutics, based on generations of indigenous practices. The upsurge of herbal remedies today has been largely driven by public demand, and billions of dollars are spent annually on herbal medications. The response of the healthcare sector to this issue has been varied: Some reject it because of unidentified toxicological repercussions, while others believe we need to be open-minded, yet critical, about the use of herbal medicines. It is important to document the effectiveness of herbal medicines, their potential adverse side effects, and drug–drug interactions with orthodox pharmaceuticals. We are all responsible to promote both the rational and safe use of folk herbals remedies, and we are responsible for the consequences. This Special Issue aims to highlight evidence-based research on herbal medicines with an emphasis on all aspects, including legal, medical, research, and economic aspects, in order to tackle challenges associated with herbal remedies and to provide greater opportunities for their future use.

Prof. Dr. Hala Gali-Muhtasib
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Keywords

  • herbal remedies
  • folk medicines
  • safety and toxicity
  • evidence-based research
  • policies on herbal medicine
  • drug-drug interactions
  • side effects of herbals

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

2630 KiB  
Article
Promoting Effect of Pinostrobin on the Proliferation, Differentiation, and Mineralization of Murine Pre-osteoblastic MC3T3-E1 Cells
by Chengbo Gu, Linan Fu, Xiaohan Yuan and Zhiguo Liu
Molecules 2017, 22(10), 1735; https://doi.org/10.3390/molecules22101735 - 16 Oct 2017
Cited by 19 | Viewed by 5867
Abstract
Pinostrobin (PI), a natural flavonoid found in a variety of plants, is well known for its rich pharmacological activities. However, its osteogenic function remains unclear. The aim of this study is to evaluate the effect of PI on the proliferation, differentiation, and mineralization [...] Read more.
Pinostrobin (PI), a natural flavonoid found in a variety of plants, is well known for its rich pharmacological activities. However, its osteogenic function remains unclear. The aim of this study is to evaluate the effect of PI on the proliferation, differentiation, and mineralization of murine pre-osteoblastic MC3T3-E1 cells in vitro using MTT, alkaline phosphatase (ALP) activity, the synthesis of collagen I (Col I) assay, and Von-Kossa staining, respectively. The expression of osteocalcin (OCN) mRNA in cells was detected by real-time PCR. The effect of PI on the differentiation of dexamethasone (DEX)-suppressed cells was also investigated. The results showed that PI greatly promoted the proliferation of MC3T3-E1 cells at 5–80 μg/mL (p < 0.05 or p < 0.01), and caused a significant elevation of ALP activity, Col I content, and mineralization of osteoblasts at 10–40 μg/mL (p < 0.05 or p < 0.01), and the expression levels of OCN gene were greatly upregulated after PI treatment (p < 0.01). Furthermore, PI could rescue the inhibition effect of cell differentiation induced by DEX. Taken together, these results indicated that PI could directly promote proliferation, differentiation, and mineralization of MC3T3-E1 cells and has potential for use as a natural treatment for osteoporosis. Full article
Show Figures

Figure 1

1319 KiB  
Article
Alterations in Pharmacokinetics of Gemcitabine and Erlotinib by Concurrent Administration of Hyangsayukgunja-Tang, a Gastroprotective Herbal Medicine
by Tae Hwan Kim, Soyoung Shin, Sarah Kim, Jürgen B. Bulitta, Kwon-Yeon Weon, Sang Hoon Joo, Eunsook Ma, Sun Dong Yoo, Gi-Young Park, Dong Rak Kwon, Seok Won Jeong, Da Young Lee and Beom Soo Shin
Molecules 2017, 22(9), 1515; https://doi.org/10.3390/molecules22091515 - 10 Sep 2017
Cited by 4 | Viewed by 5517
Abstract
Gemcitabine and erlotinib are the chemotherapeutic agents used in the treatment of various cancers and their combination is being accepted as a first-line treatment of advanced pancreatic cancer. Hyangsayukgunja-tang (HYT) is a traditional oriental medicine used in various digestive disorders and potentially helpful [...] Read more.
Gemcitabine and erlotinib are the chemotherapeutic agents used in the treatment of various cancers and their combination is being accepted as a first-line treatment of advanced pancreatic cancer. Hyangsayukgunja-tang (HYT) is a traditional oriental medicine used in various digestive disorders and potentially helpful to treat gastrointestinal adverse effects related to chemotherapy. The present study was aimed to evaluate the effect of HYT on the pharmacokinetics of gemcitabine and erlotinib given simultaneously in rats. Rats were pretreated with HYT at an oral dose of 1200 mg/kg/day once daily for a single day or 14 consecutive days. Immediately after pretreatment with HYT, gemcitabine and erlotinib were administered by intravenous injection (10 mg/kg) and oral administration (20 mg/kg), respectively. The effects of HYT on pharmacokinetics of the two drugs were estimated by non-compartmental analysis and pharmacokinetic modeling. The pharmacokinetics of gemcitabine and erlotinib were not altered by single dose HYT pretreatment. However, the plasma levels of OSI-420 and OSI-413, active metabolites of erlotinib, were significantly decreased in the multiple dose HYT pretreatment group. The pharmacokinetic model estimated increased systemic clearances of OSI-420 and OSI-413 by multiple doses of HYT. These data suggest that HYT may affect the elimination of OSI-420 and OSI-413. Full article
Show Figures

Figure 1

1295 KiB  
Article
Effect of Sipjeondaebo-Tang on the Pharmacokinetics of S-1, an Anticancer Agent, in Rats Evaluated by Population Pharmacokinetic Modeling
by Tae Hwan Kim, Soyoung Shin, Jeong Cheol Shin, Jürgen B. Bulitta, Kwon-Yeon Weon, Sun Dong Yoo, Gi-Young Park, Seok Won Jeong, Dong Rak Kwon, Byung Sun Min, Mi Hee Woo and Beom Soo Shin
Molecules 2017, 22(9), 1488; https://doi.org/10.3390/molecules22091488 - 07 Sep 2017
Cited by 3 | Viewed by 4815
Abstract
S-1 (TS-1®) is an oral fluoropyrimidine anticancer agent containing tegafur, oteracil, and gimeracil. Sipjeondaebo-tang (SDT) is a traditional oriental herbal medicine that has potential to alleviate chemotherapy-related adverse effects. The aim of the present study was to evaluate the effect of [...] Read more.
S-1 (TS-1®) is an oral fluoropyrimidine anticancer agent containing tegafur, oteracil, and gimeracil. Sipjeondaebo-tang (SDT) is a traditional oriental herbal medicine that has potential to alleviate chemotherapy-related adverse effects. The aim of the present study was to evaluate the effect of SDT on the pharmacokinetics of S-1. Sprague-Dawley rats were pretreated with a single dose or repeated doses of SDT for seven consecutive days (1200 mg/kg/day). After the completion of pretreatment with SDT, S-1 was orally administered and plasma concentrations of tegafur, its active metabolite 5-FU, and gimeracil were determined by liquid chromatography-tandem mass spectrometry (LC/MS/MS). A population pharmacokinetic model was developed to evaluate the effect of SDT on pharmacokinetics of tegafur and 5-FU. Although a single dose of SDT did not have any significant effect, the absorption rate of tegafur decreased, and the plasma levels of 5-FU reduced significantly in rats pretreated with SDT for seven days in parallel to the decreased gimeracil concentrations. Population pharmacokinetic modeling also showed the enhanced elimination of 5-FU in the SDT-pretreated group. Repeated doses of SDT may inhibit the absorption of gimeracil, an inhibitor of 5-FU metabolism, resulting in enhanced elimination of 5-FU and decrease its plasma level. Full article
Show Figures

Figure 1

3008 KiB  
Article
Synergic Anti-Pruritus Mechanisms of Action for the Radix Sophorae Flavescentis and Fructus Cnidii Herbal Pair
by Jiali Zhong, Zhihong Liu, Xinxin Zhou and Jun Xu
Molecules 2017, 22(9), 1465; https://doi.org/10.3390/molecules22091465 - 04 Sep 2017
Cited by 29 | Viewed by 5380
Abstract
Radix Sophorae Flavescentis (RSF) and Fructus Cnidii (FC) compose a typical herbal synergic pair in traditional Chinese medicine (TCM) for pruritus symptom treatments. The mechanisms of action for the synergy are not understood. This paper aims at predicting the anti-pruritus targets and the [...] Read more.
Radix Sophorae Flavescentis (RSF) and Fructus Cnidii (FC) compose a typical herbal synergic pair in traditional Chinese medicine (TCM) for pruritus symptom treatments. The mechanisms of action for the synergy are not understood. This paper aims at predicting the anti-pruritus targets and the main active ingredients for the RSF and FC herbal pair. We demonstrate that the RSF–FC herbal pair can be elucidated by mining the chemical structures of compounds derived from RSF and FC. Based on chemical structure data, the putative targets for RSF and FC were predicted. Additional putative targets that interact with the anti-pruritus targets were derived by mapping the putative targets onto a PPI network. By examining the annotations of these proteins, we conclude that (1) RSF’s active compounds are mainly alkaloids and flavonoids. The representative putative targets of the alkaloids are inflammation-related proteins (MAPK14, PTGS2, PTGS2, and F2) and pruritus-related proteins (HRH1, TRPA1, HTR3A, and HTR6). The representative putative targets of the flavonoids are inflammation-related proteins (TNF, NF-κB, F2, PTGS2, and PTGS2) and pruritus-related proteins (NR3C1 and IL2). (2) FC’s active compounds are mainly coumarins. Their representative putative targets are CNS-related proteins (AChE and OPRK1) and inflammation-related proteins (PDE4D, TLR9, and NF-κB). (3) Both RSF and FC display anti-inflammatory effects, though they exhibit their anti-pruritus effects in different ways. Their synergy shows that RSF regulates inflammation-related pruritus and FC regulates CNS-related pruritus. Full article
Show Figures

Figure 1

2748 KiB  
Article
Effects of Refined Xiaoyaosan on Depressive-Like Behaviors in Rats with Chronic Unpredictable Mild Stress through Neurosteroids, Their Synthesis and Metabolic Enzymes
by Xiaoling Guo, Wenqi Qiu, Yueyun Liu, Yifang Zhang, Hongbo Zhao and Jiaxu Chen
Molecules 2017, 22(8), 1386; https://doi.org/10.3390/molecules22081386 - 21 Aug 2017
Cited by 26 | Viewed by 4700
Abstract
Abstract: To observe the effects of refined Xiaoyaosan (XYS) on the depressive-like behaviors in rats with chronic unpredictable mild stress (CUMS), and to explore the relationship between the changes of neurosteroids and mRNA expressions of their synthesis and metabolic enzymes, and [...] Read more.
Abstract: To observe the effects of refined Xiaoyaosan (XYS) on the depressive-like behaviors in rats with chronic unpredictable mild stress (CUMS), and to explore the relationship between the changes of neurosteroids and mRNA expressions of their synthesis and metabolic enzymes, and the mechanism of XYS in the treatment of depression. Methods: Eighty-four healthy male Sprague-Dawley rats were randomly divided into normal group, model group, XYS group and fluoxetine group. The latter three groups were subjected to 21 days of CUMS to prepare the stress depression model. Rats in the XYS group, and fluoxetine group were given intragastric administration with refined XYS and fluoxetine, respectively. The behavioral changes of the rats were observed after 21 days. The contents of pregnenolone (PREG), progesterone (PROG) and alloprognanolone (ALLO) in the plasma of rats were measured by ELISA. The levels of PREG, PROG and ALLO in the hippocampus and amygdala tissues were measured by LC-MS/MS. The mRNA expressions of 3α-hydroxysteroid dehydrogenase (3α-HSD), 3β-hydroxysteroid dehydrogenase (3β-HSD), cholesterol side-chain cleavage enzyme (P450scc) and 5α-reductase (5a-R) in the hippocampus and amygdala were detected by RT-qPCR methods. Results: There were changes in the model rats. The contents of PREG, PROG and ALLO changed similarly, which reflected in the decrease of PROG and ALLO, and the increase of PREG. The mRNA expression of P450scc was increased, and the mRNA expressions of 3α-HSD, 3β-HSD and 5a-R were decreased. Refined XYS could improve the behaviors of rats and the biological indicators. Conclusions: There is a neurosteroid dysfunction in the brain region of depression rat model animals, and the mechanism of refined XYS depression treatment may be related to the regulation of the control of mRNA expression of related synthesis and metabolic enzymes in the hippocampus and amygdala, further affecting the contents of neurosteroids. Full article
Show Figures

Figure 1

1621 KiB  
Article
Time-dependent Inhibition of CYP2C8 and CYP2C19 by Hedera helix Extracts, A Traditional Respiratory Herbal Medicine
by Shaheed Ur Rehman, In Sook Kim, Min Sun Choi, Seung Hyun Kim, Yonghui Zhang and Hye Hyun Yoo
Molecules 2017, 22(7), 1241; https://doi.org/10.3390/molecules22071241 - 24 Jul 2017
Cited by 7 | Viewed by 6352
Abstract
The extract of Hedera helix L. (Araliaceae), a well-known folk medicine, has been popularly used to treat respiratory problems, worldwide. It is very likely that this herbal extract is taken in combination with conventional drugs. The present study aimed to evaluate the effects [...] Read more.
The extract of Hedera helix L. (Araliaceae), a well-known folk medicine, has been popularly used to treat respiratory problems, worldwide. It is very likely that this herbal extract is taken in combination with conventional drugs. The present study aimed to evaluate the effects of H. helix extract on cytochrome P450 (CYP) enzyme-mediated metabolism to predict the potential for herb–drug interactions. A cocktail probe assay was used to measure the inhibitory effect of CYP. H. helix extracts were incubated with pooled human liver microsomes or CYP isozymes with CYP-specific substrates, and the formation of specific metabolites was investigated to measure the inhibitory effects. H. helix showed significant inhibitory effects on CYP2C8, CYP2C19 and CYP2D6 in a concentration-dependent manner. In recombinant CYP2C8, CYP2C19 and CYP2D6 isozymes, the IC50 values of the extract were 0.08 ± 0.01, 0.58 ± 0.03 and 6.72 ± 0.22 mg/mL, respectively. Further investigation showed that H. helix extract has a positive time-dependent inhibition property on both CYP2C8 and CYP2C19 with IC50 shift value of 2.77 ± 0.12 and 6.31 ± 0.25, respectively. Based on this in vitro investigation, consumption of herbal medicines or dietary supplements containing H. helix extracts requires careful attention to avoid any CYP-based interactions. Full article
Show Figures

Figure 1

1600 KiB  
Article
Evodiamine Exerts an Anti-Hepatocellular Carcinoma Activity through a WWOX-Dependent Pathway
by Che-Yuan Hu, Hung-Tsung Wu, Yu-Chu Su, Ching-Han Lin, Chih-Jen Chang and Chao-Liang Wu
Molecules 2017, 22(7), 1175; https://doi.org/10.3390/molecules22071175 - 14 Jul 2017
Cited by 36 | Viewed by 4578
Abstract
Evodiamine is one of the main components isolated from Evodia rutaecarpa, and it has been reported to exert inhibitory effects on cancers by anti-proliferative and apoptosis-inducing activities. Although the anti-cancer activity of evodiamine has been identified, the precise mechanisms of this action [...] Read more.
Evodiamine is one of the main components isolated from Evodia rutaecarpa, and it has been reported to exert inhibitory effects on cancers by anti-proliferative and apoptosis-inducing activities. Although the anti-cancer activity of evodiamine has been identified, the precise mechanisms of this action remain obscure. While previous studies indicated that evodiamine exerts anti-tumor effects through inhibiting β-catenin activity, and WW domain-containing oxidoreductase (WWOX) regulates β-catenin accumulation in cytoplasm, the effects of evodiamine on the expression of WWOX are still unknown. In this study, we provide evidence that evodiamine dose- and time-dependently inhibits both Mus musculus and Homo sapiens hepatocellular carcinoma (HCC) cells, as well as Hepa1-6 and HepG2 cell proliferation. We further tested the therapeutic effects of evodiamine in Hepa1-6 hepatoma-bearing mice, and we found that treatment of evodiamine by oral gavage significantly decreased the tumor size of the mice. Moreover, the expressions of WWOX were dose-dependently increased in HCC cell lines as well as in Hepa1-6 hepatoma-bearing mice after the treatment with evodiamine. Knockdown of WWOX in HepG2 and Hepa1-6 cells diminished the effects of evodiamine on the inhibitory effect of cancer cell growth, indicating that evodiamine induced anti-cancer activity through a WWOX-dependent pathway. As such, evodiamine activated WWOX to exert an anti-HCC activity, and might be a potential therapeutic or preventive candidate for HCC treatment. Full article
Show Figures

Figure 1

1529 KiB  
Article
Osteoprotective Effect of Radix Scutellariae in Female Hindlimb-Suspended Sprague-Dawley Rats and the Osteogenic Differentiation Effect of Its Major Constituent
by Guangwei Zhang, Chenrui Li, Yinbo Niu, Qi Yu, Yulong Chen and Enqi Liu
Molecules 2017, 22(7), 1044; https://doi.org/10.3390/molecules22071044 - 03 Jul 2017
Cited by 15 | Viewed by 4904
Abstract
A number of medicinal herbs have demonstrated therapeutic effects for the prevention and treatment of disuse-induced osteoporosis. As a common ingredient in proprietary traditional Chinese medicines, the anti-osteoporosis effects of Radix Scutellariae extract (RSE, 50 mg/kg/day) were evaluated in a hindlimb suspended rat [...] Read more.
A number of medicinal herbs have demonstrated therapeutic effects for the prevention and treatment of disuse-induced osteoporosis. As a common ingredient in proprietary traditional Chinese medicines, the anti-osteoporosis effects of Radix Scutellariae extract (RSE, 50 mg/kg/day) were evaluated in a hindlimb suspended rat model. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry, and the micro-architecture observed by MicroCT assay with bone biomechanical properties evaluated by a three-point bending test. To elucidate potential mechanisms, the osteogenic differentiation effect of baicalin as the most abundant ingredient in RSE was investigated in rat bone marrow derived mesenchymal stem cells (rBMSC). After drug administration for 42 days, tibia-BMD was significantly increased to 0.176 ± 0.007 and 0.183 ± 0.011 g/cm2 and f-BMD was enhanced to 0.200 ± 0.017 and 0.207 ± 0.021 g/cm2 for RSE and ALE treatment, respectively, whereas tibia-BMD and femur-BMD of the HLS group were 0.157 ± 0.009 and 0.176 ± 0.008 g/cm2. Deterioration of bone trabecula microstructure was improved by RSE and ALE with increased morphological parameters such as bone volume fraction, trabecular thickness, and trabecular number, as well as connectivity density compared to the HLS group (p < 0.01). A three-point bending test suggested that bone mechanical strength was also enhanced by RSE and ALE treatments with increased maximum stress, young’s modulus, maximum load, and stiffness compared to those of the HLS group (p < 0.05). Besides, serum TRACP levels were significantly suppressed by RSE and ALE treatments. Furthermore, in vitro studies demonstrated that baicalin significantly increased ALP activities and the formation of mineralized nodules in rBMSC. Conclusively, supplementation of RSE could significantly prevent weightlessness induced osteoporosis, which might attribute to the osteogenic differentiation enhancement effect of baicalin. Full article
Show Figures

Figure 1

2452 KiB  
Article
Hochu-ekki-to Treatment Improves Reproductive and Immune Modulation in the Stress-Induced Rat Model of Polycystic Ovarian Syndrome
by Eunkuk Park, Chun Whan Choi, Soo Jeong Kim, Yong-In Kim, Samkee Sin, Jong-Phil Chu and Jun Young Heo
Molecules 2017, 22(6), 978; https://doi.org/10.3390/molecules22060978 - 13 Jun 2017
Cited by 8 | Viewed by 4197
Abstract
The traditional herbal medicine, Hochu-ekki-to, has been shown to have preventive effects on viral infection and stress. This study aimed to evaluate the clinical effects of Hochu-ekki-to on two stress-related rat models of polycystic ovarian syndrome. Female Sprague-Dawley rats were divided into control [...] Read more.
The traditional herbal medicine, Hochu-ekki-to, has been shown to have preventive effects on viral infection and stress. This study aimed to evaluate the clinical effects of Hochu-ekki-to on two stress-related rat models of polycystic ovarian syndrome. Female Sprague-Dawley rats were divided into control and treatment groups, the latter of which were subjected to stress induced by exposure to adrenocorticotropic hormone (ACTH) or cold temperatures. After these stress inductions, rats were orally treated with dissolved Hochu-ekki-to once per day for 7 days. Rats subjected to the two different stressors exhibited upregulation of steroid hormone receptors (in ovaries) and reproductive hormones (in blood), and consequent stimulation of abnormal follicle development accompanied by elevation of Hsp 90 expression (in ovaries). Treatment with Hochu-ekki-to for 7 days after stress induction increased immune functions, reduced the stress-induced activation of Hsp 90, and normalized the levels of the tested steroid hormone receptors and reproductive hormones. Our findings suggest that stress stimulations may promote the activation of Hsp 90 via the dysregulation of steroid hormone receptors and reproductive hormones, but that post-stress treatment with Hochu-ekki-to improves reproductive and immune functions in the ovaries of stressed rats. Full article
Show Figures

Figure 1

7110 KiB  
Article
Levo-Corydalmine Alleviates Neuropathic Cancer Pain Induced by Tumor Compression via the CCL2/CCR2 Pathway
by Yahui Hu, Nandani Darshika Kodithuwakku, Lin Zhou, Chengyuan Li, Dan Han, Weirong Fang, Jihua Liu and Yunman Li
Molecules 2017, 22(6), 937; https://doi.org/10.3390/molecules22060937 - 06 Jun 2017
Cited by 21 | Viewed by 5689
Abstract
Background: Tumor compression-induced pain (TCIP) is a complex pathological cancer pain. Spinal glial cells play a critical role in maintenance of cancer pain by releasing proinflammatory cytokines and chemokines. In this study, we verified the role of levo-corydalmine (l-CDL) [...] Read more.
Background: Tumor compression-induced pain (TCIP) is a complex pathological cancer pain. Spinal glial cells play a critical role in maintenance of cancer pain by releasing proinflammatory cytokines and chemokines. In this study, we verified the role of levo-corydalmine (l-CDL) on TCIP. Methods: Spontaneous pain, paw withdrawal threshold and latency were assessed using TCIP mouse model. Immunofluorescence was used to identify the reactions of glia. RT-PCR and western blot or ELISA were used to determine mRNA or protein expression of tumor necrosis factor-α (TNF-α), interlukin-1β (IL-1β), CC chemokine ligand 2 (CCL2) and chemotactic cytokine receptor 2 (CCR2) in vivo and in vitro. Results: l-CDL significantly attenuated TCIP hypersensitivity, accompanying with downregulation of TNF-α and IL-1β expression levels and declined astrocytes and microglial activation. It also significantly decreased the expression of the mRNA and protein level for CCL2 and CCR2. Further, l-CDL could suppress TNF-α-induced astrocytes activation and IL-1β expression through downregulating the CCL2/CCR2. Besides, CCL2-induced BV-microglia activation and inflammatory factors secretion were suppressed by l-CDL via CCR2. Conclusions: Suppression of CCL2/CCR2 by l-CDL may contribute to alleviate TCIP, offering an alternative medication for TCIP. Full article
Show Figures

Figure 1

8885 KiB  
Article
Gubenyiliu II Inhibits Breast Tumor Growth and Metastasis Associated with Decreased Heparanase Expression and Phosphorylation of ERK and AKT Pathways
by Yi Zhang, Gan-Lin Zhang, Xu Sun, Ke-Xin Cao, Ya-Wen Shang, Mu-Xin Gong, Cong Ma, Nan Nan, Jin-Ping Li, Ming-Wei Yu, Guo-Wang Yang and Xiao-Min Wang
Molecules 2017, 22(5), 787; https://doi.org/10.3390/molecules22050787 - 15 May 2017
Cited by 11 | Viewed by 6188
Abstract
Gubenyiliu II (GYII), a Traditional Chinese Medicine (TCM) formula used in our hospital, has shown beneficial effects in cancer patients. In this study, we investigated the molecular mechanisms underlying the beneficial effects of GYII on murine breast cancer models. GYII showed significant inhibitory [...] Read more.
Gubenyiliu II (GYII), a Traditional Chinese Medicine (TCM) formula used in our hospital, has shown beneficial effects in cancer patients. In this study, we investigated the molecular mechanisms underlying the beneficial effects of GYII on murine breast cancer models. GYII showed significant inhibitory effects on tumor growth and metastasis in the murine breast cancer model. Additionally, GYII suppressed the proliferation of 4T1 and MCF-7 cells in a dose-dependent manner. A better inhibitory effect on 4T1 cell proliferation and migration was found in the decomposed recipes (DR) of GYII. Moreover, heparanase expression and the degree of angiogenesis were reduced in tumor tissues. Western blot analysis showed decreased expression of heparanase and growth factors in the cells treated with GYII and its decomposed recipes (DR2 and DR3), and thereby a reduction in the phosphorylation of extracellular signal-regulated kinase (ERK) and serine-threonine kinase (AKT). These results suggest that GYII exerts anti-tumor growth and anti-metastatic effects in the murine breast cancer model. The anti-tumor activity of GYII and its decomposed recipes is, at least partly, associated with decreased heparanase and growth factor expression, which subsequently suppressed the activation of the ERK and AKT pathways. Full article
Show Figures

Figure 1

1636 KiB  
Article
A Network-Based Pharmacology Study of the Herb-Induced Liver Injury Potential of Traditional Hepatoprotective Chinese Herbal Medicines
by Ming Hong, Sha Li, Hor Yue Tan, Fan Cheung, Ning Wang, Jihan Huang and Yibin Feng
Molecules 2017, 22(4), 632; https://doi.org/10.3390/molecules22040632 - 14 Apr 2017
Cited by 52 | Viewed by 8928
Abstract
Herbal medicines are widely used for treating liver diseases and generally regarded as safe due to their extensive use in Traditional Chinese Medicine practice for thousands of years. However, in recent years, there have been increased concerns regarding the long-term risk of Herb-Induced [...] Read more.
Herbal medicines are widely used for treating liver diseases and generally regarded as safe due to their extensive use in Traditional Chinese Medicine practice for thousands of years. However, in recent years, there have been increased concerns regarding the long-term risk of Herb-Induced Liver Injury (HILI) in patients with liver dysfunction. Herein, two representative Chinese herbal medicines: one—Xiao-Chai-Hu-Tang (XCHT)—a composite formula, and the other—Radix Polygoni Multiflori (Heshouwu)—a single herb, were analyzed by network pharmacology study. Based on the network pharmacology framework, we exploited the potential HILI effects of XCHT and Heshouwu by predicting the molecular mechanisms of HILI and identified the potential hepatotoxic ingredients in XCHT and Heshouwu. According to our network results, kaempferol and thymol in XCHT and rhein in Heshouwu exhibit the largest number of liver injury target connections, whereby CASP3, PPARG and MCL1 may be potential liver injury targets for these herbal medicines. This network pharmacology assay might serve as a useful tool to explore the underlying molecular mechanism of HILI. Based on the theoretical predictions, further experimental verification should be performed to validate the accuracy of the predicted interactions between herbal ingredients and protein targets in the future. Full article
Show Figures

Figure 1

Review

Jump to: Research

1621 KiB  
Review
Phytochemistry, Pharmacology and Traditional Uses of Plants from the Genus Trachelospermum L.
by Zefeng Zhao, Xirui He, Yuhui Zhao, Ying Sun, Xufei Chen, Ye Cun, Linhong Huang, Yajun Bai and Xiaohui Zheng
Molecules 2017, 22(9), 1406; https://doi.org/10.3390/molecules22091406 - 24 Aug 2017
Cited by 12 | Viewed by 7758
Abstract
This paper is intended to review advances in the botanical, phytochemical, traditional uses and pharmacological studies of the genus Trachelospermum. Until now, 138 chemical constituents have been isolated and characterized from these plants, particularly from T. asiaticum and T. jasminoides. Among [...] Read more.
This paper is intended to review advances in the botanical, phytochemical, traditional uses and pharmacological studies of the genus Trachelospermum. Until now, 138 chemical constituents have been isolated and characterized from these plants, particularly from T. asiaticum and T. jasminoides. Among these compounds, lignans, triterpenoids, and flavonoids are the major bioactive constituents. Studies have shown that plants from the genus Trachelospermum exhibit an extensive range of pharmacological properties both in vivo and in vitro, including anti-inflammatory, analgesic, antitumor, antiviral and antibacterial activities. In Traditional Chinese Medicine (TCM) culture, drugs that include T. jasminoides stems have been used to cure rheumatism, gonarthritis, backache and pharyngitis, although there are few reports concerning the clinical use and toxicity of these plants. Further attention should be paid to gathering information about their toxicology data, quality-control measures, and the clinical value of the active compounds from genus Trachelospermum. Full article
Show Figures

Graphical abstract

Back to TopTop