Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 22, Issue 6 (June 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The increasing popularity of porphyrinoids in a variety of biomedical and technical applications is [...] Read more.
View options order results:
result details:
Displaying articles 1-171
Export citation of selected articles as:
Open AccessArticle Virtual Screening against Phosphoglycerate Kinase 1 in Quest of Novel Apoptosis Inhibitors
Molecules 2017, 22(6), 1029; https://doi.org/10.3390/molecules22061029
Received: 20 April 2017 / Revised: 20 June 2017 / Accepted: 20 June 2017 / Published: 21 June 2017
PDF Full-text (11875 KB) | HTML Full-text | XML Full-text
Abstract
Inhibition of apoptosis is a potential therapy to treat human diseases such as neurodegenerative disorders (e.g., Parkinson’s disease), stroke, and sepsis. Due to the lack of druggable targets, it remains a major challenge to discover apoptosis inhibitors. The recent repositioning of a marketed
[...] Read more.
Inhibition of apoptosis is a potential therapy to treat human diseases such as neurodegenerative disorders (e.g., Parkinson’s disease), stroke, and sepsis. Due to the lack of druggable targets, it remains a major challenge to discover apoptosis inhibitors. The recent repositioning of a marketed drug (i.e., terazosin) as an anti-apoptotic agent uncovered a novel target (i.e., human phosphoglycerate kinase 1 (hPgk1)). In this study, we developed a virtual screening (VS) pipeline based on the X-ray structure of Pgk1/terazosin complex and applied it to a screening campaign for potential anti-apoptotic agents. The hierarchical filters in the pipeline (i.e., similarity search, a pharmacophore model, a shape-based model, and molecular docking) rendered 13 potential hits from Specs chemical library. By using PC12 cells (exposed to rotenone) as a cell model for bioassay, we first identified that AK-918/42829299, AN-465/41520984, and AT-051/43421517 were able to protect PC12 cells from rotenone-induced cell death. Molecular docking suggested these hit compounds were likely to bind to hPgk1 in a similar mode to terazosin. In summary, we not only present a versatile VS pipeline for potential apoptosis inhibitors discovery, but also provide three novel-scaffold hit compounds that are worthy of further development and biological study. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Graphical abstract

Open AccessArticle Synthesis and Bioactivity Characterization of Scutellarein Sulfonated Derivative
Molecules 2017, 22(6), 1028; https://doi.org/10.3390/molecules22061028
Received: 27 May 2017 / Revised: 20 June 2017 / Accepted: 20 June 2017 / Published: 21 June 2017
PDF Full-text (498 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Scutellarin (1) has been widely used to treat acute cerebral infarction in clinic, but poor aqueous solubility decreases its bioavailability. Interestingly, scutellarin (1) could be metabolized into scutellarein (2) in vivo. In this study, a sulfonic group
[...] Read more.
Scutellarin (1) has been widely used to treat acute cerebral infarction in clinic, but poor aqueous solubility decreases its bioavailability. Interestingly, scutellarin (1) could be metabolized into scutellarein (2) in vivo. In this study, a sulfonic group was introduced at position C-8 of scutellarein (2) to enhance the aqueous solubility of the obtained derivative (3). DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging ability and antithrombic activity were also conducted to determine its bioactivity. The result showed that scutellarein derivate (3) could be a better agent for ischemic cerebrovascular disease treatment. Full article
(This article belongs to the Special Issue Synthesis and Modification of Natural Product)
Figures

Figure 1

Open AccessArticle Molecular Quantum Similarity, Chemical Reactivity and Database Screening of 3D Pharmacophores of the Protein Kinases A, B and G from Mycobacterium tuberculosis
Molecules 2017, 22(6), 1027; https://doi.org/10.3390/molecules22061027
Received: 26 May 2017 / Revised: 13 June 2017 / Accepted: 16 June 2017 / Published: 21 June 2017
Cited by 3 | PDF Full-text (9431 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mycobacterium tuberculosis remains one of the world’s most devastating pathogens. For this reason, we developed a study involving 3D pharmacophore searching, selectivity analysis and database screening for a series of anti-tuberculosis compounds, associated with the protein kinases A, B, and G. This theoretical
[...] Read more.
Mycobacterium tuberculosis remains one of the world’s most devastating pathogens. For this reason, we developed a study involving 3D pharmacophore searching, selectivity analysis and database screening for a series of anti-tuberculosis compounds, associated with the protein kinases A, B, and G. This theoretical study is expected to shed some light onto some molecular aspects that could contribute to the knowledge of the molecular mechanics behind interactions of these compounds, with anti-tuberculosis activity. Using the Molecular Quantum Similarity field and reactivity descriptors supported in the Density Functional Theory, it was possible to measure the quantification of the steric and electrostatic effects through the Overlap and Coulomb quantitative convergence (alpha and beta) scales. In addition, an analysis of reactivity indices using global and local descriptors was developed, identifying the binding sites and selectivity on these anti-tuberculosis compounds in the active sites. Finally, the reported pharmacophores to PKn A, B and G, were used to carry out database screening, using a database with anti-tuberculosis drugs from the Kelly Chibale research group (http://www.kellychibaleresearch.uct.ac.za/), to find the compounds with affinity for the specific protein targets associated with PKn A, B and G. In this regard, this hybrid methodology (Molecular Mechanic/Quantum Chemistry) shows new insights into drug design that may be useful in the tuberculosis treatment today. Full article
(This article belongs to the Section Molecular Diversity)
Figures

Graphical abstract

Open AccessArticle Screening and Identification of the Metabolites in Rat Plasma and Urine after Oral Administration of Areca catechu L. Nut Extract by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap–Orbitrap Tandem Mass Spectrometry
Molecules 2017, 22(6), 1026; https://doi.org/10.3390/molecules22061026
Received: 6 June 2017 / Revised: 18 June 2017 / Accepted: 19 June 2017 / Published: 21 June 2017
PDF Full-text (2448 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Areca catechu L. nut, a well-known toxic traditional herbal medicine, has been widely used to treat various diseases in China and many other Asian countries for centuries. However, to date the in vivo absorption and metabolism of its multiple bioactive or toxic components
[...] Read more.
Areca catechu L. nut, a well-known toxic traditional herbal medicine, has been widely used to treat various diseases in China and many other Asian countries for centuries. However, to date the in vivo absorption and metabolism of its multiple bioactive or toxic components still remain unclear. In this study, liquid chromatography coupled with tandem mass spectrometry was used to analyze the major components and their metabolites in rat plasma and urine after oral administration of Areca catechu L. nut extract (ACNE). A total of 12 compounds, including 6 alkaloids, 3 tannins and 3 amino acids, were confirmed or tentatively identified from ACNE. In vivo, 40 constituents, including 8 prototypes and 32 metabolites were identified in rat plasma and urine samples. In summary, this study showed an insight into the metabolism of ACNE in vivo, which may provide helpful chemical information for better understanding of the toxicological and pharmacological profiles of ACNE. Full article
(This article belongs to the Section Metabolites)
Figures

Graphical abstract

Open AccessReview From Farm to Pharma: An Overview of Industrial Heparin Manufacturing Methods
Molecules 2017, 22(6), 1025; https://doi.org/10.3390/molecules22061025
Received: 19 May 2017 / Accepted: 18 June 2017 / Published: 21 June 2017
Cited by 3 | PDF Full-text (2383 KB) | HTML Full-text | XML Full-text
Abstract
The purification of heparin from offal is an old industrial process for which commercial recipes date back to 1922. Although chemical, chemoenzymatic, and biotechnological alternatives for this production method have been published in the academic literature, animal-tissue is still the sole source for
[...] Read more.
The purification of heparin from offal is an old industrial process for which commercial recipes date back to 1922. Although chemical, chemoenzymatic, and biotechnological alternatives for this production method have been published in the academic literature, animal-tissue is still the sole source for commercial heparin production in industry. Heparin purification methods are closely guarded industrial secrets which are not available to the general (scientific) public. However by reviewing the academic and patent literature, we aim to provide a comprehensive overview of the general methods used in industry for the extraction of heparin from animal tissue. Full article
Figures

Figure 1

Open AccessReview Deoxyelephantopin and Isodeoxyelephantopin as Potential Anticancer Agents with Effects on Multiple Signaling Pathways
Molecules 2017, 22(6), 1013; https://doi.org/10.3390/molecules22061013
Received: 17 May 2017 / Revised: 8 June 2017 / Accepted: 15 June 2017 / Published: 21 June 2017
Cited by 1 | PDF Full-text (1832 KB) | HTML Full-text | XML Full-text
Abstract
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and
[...] Read more.
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and isodeoxyelephantopin (IDET) are sesquiterpene lactone components of “Elephantopus scaber and Elephantopus carolinianus”, traditional Chinese medicinal herbs that have long been used as folk medicines to treat liver diseases, diabetes, diuresis, bronchitis, fever, diarrhea, dysentery, cancer, and inflammation. Recently, the anticancer activity of DET and IDET has been widely investigated. Here, our aim is to review the current status of DET and IDET, and discuss their anticancer activity with specific emphasis on molecular targets and mechanisms used by these compounds to trigger apoptosis pathways which may help to further design and conduct research to develop them as lead therapeutic drugs for cancer treatments. The literature has shown that DET and IDET induce apoptosis through multiple signaling pathways which are deregulated in cancer cells and suggested that by targeting multiple pathways simultaneously, these compounds could selectively kill cancer cells. This review suggests that DET and IDET hold promising anticancer activity but additional studies and clinical trials are needed to validate and understand their therapeutic effect to develop them into potent therapeutics for the treatment of cancer. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Figure 1

Open AccessReview Insights into Penicillium brasilianum Secondary Metabolism and Its Biotechnological Potential
Molecules 2017, 22(6), 858; https://doi.org/10.3390/molecules22060858
Received: 29 March 2017 / Revised: 12 May 2017 / Accepted: 12 May 2017 / Published: 20 June 2017
PDF Full-text (6048 KB) | HTML Full-text | XML Full-text
Abstract
Over the past few years Penicillium brasilianum has been isolated from many different environmental sources as soil isolates, plant endophytes and onion pathogen. All investigated strains share a great ability to produce bioactive secondary metabolites. Different authors have investigated this great capability and
[...] Read more.
Over the past few years Penicillium brasilianum has been isolated from many different environmental sources as soil isolates, plant endophytes and onion pathogen. All investigated strains share a great ability to produce bioactive secondary metabolites. Different authors have investigated this great capability and here we summarize the metabolic potential and the biological activities related to P. brasilianums metabolites with diverse structures. They include secondary metabolites of an alkaloid nature, i.e., 2,5-diketopiperazines, cyclodepsipeptides, meroterpenoids and polyketides. Penicillium brasilianum is also described as a great source of enzymes with biotechnological application potential, which is also highlighted in this review. Additionally, this review will focus on several aspects of Penicillium brasilianum and interesting genomic insights. Full article
Figures

Figure 1

Open AccessArticle The Antiproliferative Effect of Cyclodipeptides from Pseudomonas aeruginosa PAO1 on HeLa Cells Involves Inhibition of Phosphorylation of Akt and S6k Kinases
Molecules 2017, 22(6), 1024; https://doi.org/10.3390/molecules22061024
Received: 29 May 2017 / Revised: 14 June 2017 / Accepted: 16 June 2017 / Published: 20 June 2017
Cited by 1 | PDF Full-text (3692 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Pseudomonas aeruginosa PAO1, a potential pathogen of plants and animals, produces the cyclodipeptides cyclo(l-Pro-l-Tyr), cyclo(l-Pro-l-Phe), and cyclo(l-Pro-l-Val) (PAO1-CDPs), whose effects have been implicated in inhibition of human tumor cell line proliferation. Our purpose was to investigate in depth in the mechanisms of HeLa
[...] Read more.
Pseudomonas aeruginosa PAO1, a potential pathogen of plants and animals, produces the cyclodipeptides cyclo(l-Pro-l-Tyr), cyclo(l-Pro-l-Phe), and cyclo(l-Pro-l-Val) (PAO1-CDPs), whose effects have been implicated in inhibition of human tumor cell line proliferation. Our purpose was to investigate in depth in the mechanisms of HeLa cell proliferation inhibition by the PAO1-CDPs. The results indicate that PAO1-CDPs, both purified individually and in mixtures, inhibited HeLa cell proliferation by arresting the cell cycle at the G0–G1 transition. The crude PAO1-CDPs mixture promoted cell death in HeLa cells in a dose-dependent manner, showing efficacy similar to that of isolated PAO1-CDPs (LD50 of 60–250 µM) and inducing apoptosis with EC50 between 0.6 and 3.0 µM. Moreover, PAO1-CDPs showed a higher proapoptotic activity (~103–105 fold) than their synthetic analogs did. Subsequently, the PAO1-CDPs affected mitochondrial membrane potential and induced apoptosis by caspase-9-dependent pathway. The mechanism of inhibition of cells proliferation in HeLa cells involves inhibition of phosphorylation of both Akt-S473 and S6k-T389 protein kinases, showing a cyclic behavior of their expression and phosphorylation in a time and concentration-dependent fashion. Taken together our findings indicate that PI3K–Akt–mTOR–S6k signaling pathway blockage is involved in the antiproliferative effect of the PAO1-CDPs. Full article
(This article belongs to the Special Issue Peptide-Based Drugs and Drug Delivery Systems)
Figures

Graphical abstract

Open AccessArticle Phenolic Glycosides from Capsella bursa-pastoris (L.) Medik and Their Anti-Inflammatory Activity
Molecules 2017, 22(6), 1023; https://doi.org/10.3390/molecules22061023
Received: 16 May 2017 / Revised: 12 June 2017 / Accepted: 18 June 2017 / Published: 20 June 2017
PDF Full-text (596 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new sesquilignan glycoside 1, together with seven known phenolic glycosides 28 were isolated from the aerial parts of Capsella bursa-pastoris. The chemical structure of the new compound 1 was elucidated by extensive nuclear magnetic resonance (NMR) data (1
[...] Read more.
A new sesquilignan glycoside 1, together with seven known phenolic glycosides 28 were isolated from the aerial parts of Capsella bursa-pastoris. The chemical structure of the new compound 1 was elucidated by extensive nuclear magnetic resonance (NMR) data (1H- and 13C-NMR, 1H-1H correlation spectroscopy (1H-1H COSY), heteronuclear single-quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), and nuclear overhauser effect spectroscopy (NOESY)) and HR-FABMS analysis. The anti-inflammatory effects of 18 were evaluated in lipopolysaccharide (LPS)-stimulated murine microglia BV-2 cells. Compounds 4 and 7 exhibited moderate inhibitory effects on nitric oxide production in LPS-activated BV-2 cells, with IC50 values of 17.80 and 27.91 µM, respectively. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Graphical abstract

Open AccessArticle Complex Coacervation of Soy Proteins, Isoflavones and Chitosan
Molecules 2017, 22(6), 1022; https://doi.org/10.3390/molecules22061022
Received: 23 May 2017 / Revised: 9 June 2017 / Accepted: 14 June 2017 / Published: 20 June 2017
PDF Full-text (6331 KB) | HTML Full-text | XML Full-text
Abstract
In this study, the chitosan-induced coacervation of soy protein-isoflavone complexes in soymilk was investigated. Most of the soymilk proteins, including β-conglycinin (7S), glycinin (11S), and isoflavones, were found to coacervate into the soymilk pellet fraction (SPF) following the addition of 0.5% chitosan. The
[...] Read more.
In this study, the chitosan-induced coacervation of soy protein-isoflavone complexes in soymilk was investigated. Most of the soymilk proteins, including β-conglycinin (7S), glycinin (11S), and isoflavones, were found to coacervate into the soymilk pellet fraction (SPF) following the addition of 0.5% chitosan. The total protein in the soymilk supernatant fraction (SSF) decreased from 18.1 ± 0.3 mg/mL to 1.6 ± 0.1 mg/mL, and the pH values decreased slightly, from 6.6 ± 0.0 to 6.0 ± 0.0. The results of SDS-PAGE revealed that the 7S α’, 7S α, 7S β, 11S A3, and 11S acidic subunits, as well as the 11S basic proteins in the SSF, decreased to 0.7 ± 0.5%, 0.2 ± 0.1%, 0.1 ± 0.0%, 0.2 ± 0.2%, 0.2 ± 0.2% and 0.3 ± 0.2%, respectively. We also found that isoflavones in the SSF, including daidzein, glycitein, and genistein, decreased to 9.6 ± 2.3%, 5.7 ± 0.9% and 5.9 ± 1.5%, respectively. HPLC analysis indicated that isoflavones mixed with soy proteins formed soy protein-isoflavone complexes and were precipitated into the SPF by 0.5% chitosan. Full article
(This article belongs to the Special Issue Protein-Carbohydrate Interactions)
Figures

Figure 1

Open AccessArticle The Effects of Selected Sesquiterpenes from Myrica rubra Essential Oil on the Efficacy of Doxorubicin in Sensitive and Resistant Cancer Cell Lines
Molecules 2017, 22(6), 1021; https://doi.org/10.3390/molecules22061021
Received: 10 May 2017 / Accepted: 16 June 2017 / Published: 20 June 2017
Cited by 3 | PDF Full-text (4489 KB) | HTML Full-text | XML Full-text
Abstract
β-caryophyllene oxide (CAO), α-humulene (HUM), trans-nerolidol (NER) and valencene (VAL) are constituents of the essential oil of Myrica rubra (MEO), which has significant antiproliferative effect in various cancer cell lines. In the present study, we compared the antiproliferative effect of these sesquiterpenes alone
[...] Read more.
β-caryophyllene oxide (CAO), α-humulene (HUM), trans-nerolidol (NER) and valencene (VAL) are constituents of the essential oil of Myrica rubra (MEO), which has significant antiproliferative effect in various cancer cell lines. In the present study, we compared the antiproliferative effect of these sesquiterpenes alone and in combination with the cytostatic drug doxorubicin (DOX) in cancer cell lines with different sensitivity to DOX. Two ovarian cancer cell lines (sensitive A2780 and partly resistant SKOV3) and two lymphoblast cancer cell lines (sensitive CCRF/CEM and completely resistant CEM/ADR) were used. The observed effects varied among sesquiterpenes and also differed in individual cell lines, with only VAL being effective in all the cell lines. A strong synergism of DOX with NER was found in the A2780 cells, while DOX acted synergistically with HUM and CAO in the SKOV3 cells. In the CCRF/CEM cells, a synergism of DOX with CAO and NER was observed. In resistant CEM/ADR cells, sesquiterpenes did not increase DOX efficacy, although they significantly increased accumulation of DOX (up to 10-times) and rhodamine-123 (substrate of efflux transporter ABCB1) within cancer cells. In conclusion, the tested sesquiterpenes were able to improve DOX efficacy in the sensitive and partly resistant cancer cells, but not in cells completely resistant to DOX. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Figures

Figure 1

Open AccessArticle Determination of Structural Requirements of N-Substituted Tetrahydro-β-Carboline Imidazolium Salt Derivatives Using in Silico Approaches for Designing MEK-1 Inhibitors
Molecules 2017, 22(6), 1020; https://doi.org/10.3390/molecules22061020
Received: 9 May 2017 / Revised: 8 June 2017 / Accepted: 12 June 2017 / Published: 19 June 2017
Cited by 1 | PDF Full-text (3608 KB) | HTML Full-text | XML Full-text
Abstract
Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the
[...] Read more.
Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the case of Topomer CoMFA, all the compounds were split into two fragments which were used to generate a 3D invariant representation, the statistical results of the Topomer CoMFA model: q2 value of 0.700; r2 value of 0.954; with 5 optimum components. The database alignment was utilized for building the CoMSIA model, and the CoMSIA model had q2 and r2 values of 0.615 and 0.897, with 4 optimum components. Target fishing of the PharmMapper platform was utilised for finding potential targets, the human mitogen-activated protein kinase 1 (MEK-1) was found to be the primary potential target for the three compounds with the fit scores of 6.288, 5.741, and 6.721. The molecular docking technique of MOE 2015 was carried out to identify the interactions of amino acids surrounding the ligand, and correlating QASR contour maps were used to identify structural requirements of N-substituted tetrahydro-β-carboline imidazolium salt moieties. Molecular dynamics and simulation studies proved that the target protein was stable for 0.8–5 ns. The pivotal moieties of N-substituted tetrahydro-β-carboline imidazolium salt derivatives and its potential targets were verified by the QASR study, PharmMapper, and the molecular docking study which would be helpful to design novel MEK-1 inhibitors for anticancer drugs. Full article
Figures

Figure 1

Open AccessReview Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): Botanical, Agronomical, Phytochemical, Pharmacological, and Biotechnological Aspects
Molecules 2017, 22(6), 1019; https://doi.org/10.3390/molecules22061019
Received: 29 April 2017 / Revised: 13 June 2017 / Accepted: 13 June 2017 / Published: 19 June 2017
PDF Full-text (1849 KB) | HTML Full-text | XML Full-text
Abstract
Leptadenia reticulata (Retz.) Wight & Arn. (Apocynaceae), is a traditional medicinal plant species widely used to treat various ailments such as tuberculosis, hematopoiesis, emaciation, cough, dyspnea, fever, burning sensation, night blindness, cancer, and dysentery. In Ayurveda, it is known for its revitalizing, rejuvenating,
[...] Read more.
Leptadenia reticulata (Retz.) Wight & Arn. (Apocynaceae), is a traditional medicinal plant species widely used to treat various ailments such as tuberculosis, hematopoiesis, emaciation, cough, dyspnea, fever, burning sensation, night blindness, cancer, and dysentery. In Ayurveda, it is known for its revitalizing, rejuvenating, and lactogenic properties. This plant is one of the major ingredients in many commercial herbal formulations, including Speman, Envirocare, Calshakti, Antisept, and Chyawanprash. The therapeutic potential of this herb is because of the presence of diverse bioactive compounds such as α-amyrin, β-amyrin, ferulic acid, luteolin, diosmetin, rutin, β-sitosterol, stigmasterol, hentricontanol, a triterpene alcohol simiarenol, apigenin, reticulin, deniculatin, and leptaculatin. However, most biological studies on L. reticulata are restricted to crude extracts, and many biologically active compounds are yet to be identified in order to base the traditional uses of L. reticulata on evidence-based data. At present, L. reticulata is a threatened endangered plant because of overexploitation, unscientific harvesting, and habitat loss. The increased demand from pharmaceutical, nutraceutical, and veterinary industries has prompted its large-scale propagation. However, its commercial cultivation is hampered because of the non-availability of genuine planting material and the lack of knowledge about its agronomical practices. In this regard, micropropagation techniques will be useful to obtain true-to-type L. reticulata planting materials from an elite germplasm to meet the current demand. Adopting other biotechnological approaches such as synthetic seed technology, cryopreservation, cell culture, and genetic transformation can help conservation as well as increased metabolite production from L. reticulata. The present review summarizes scientific information on the botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects of L. reticulata. This comprehensive information will certainly allow better utilization of this industrially important herb towards the discovery of lead drug molecules. Full article
Figures

Graphical abstract

Open AccessArticle Systemic Induction of the Defensin and Phytoalexin Pisatin Pathways in Pea (Pisum sativum) against Aphanomyces euteiches by Acetylated and Nonacetylated Oligogalacturonides
Molecules 2017, 22(6), 1017; https://doi.org/10.3390/molecules22061017
Received: 24 May 2017 / Revised: 16 June 2017 / Accepted: 17 June 2017 / Published: 19 June 2017
Cited by 3 | PDF Full-text (2393 KB) | HTML Full-text | XML Full-text
Abstract
Oligogalacturonides (OGs) are known for their powerful ability to stimulate the plant immune system but little is known about their mode of action in pea (Pisum sativum). In the present study, we investigated the elicitor activity of two fractions of OGs,
[...] Read more.
Oligogalacturonides (OGs) are known for their powerful ability to stimulate the plant immune system but little is known about their mode of action in pea (Pisum sativum). In the present study, we investigated the elicitor activity of two fractions of OGs, with polymerization degrees (DPs) of 2–25, in pea against Aphanomyces euteiches. One fraction was nonacetylated (OGs − Ac) whereas the second one was 30% acetylated (OGs + Ac). OGs were applied by injecting the upper two rachises of the plants at three- and/or four-weeks-old. Five-week-old roots were inoculated with 105 zoospores of A. euteiches. The root infection level was determined at 7, 10 and 14 days after inoculation using the quantitative real-time polymerase chain reaction (qPCR). Results showed significant root infection reductions namely 58, 45 and 48% in the plants treated with 80 µg OGs + Ac and 59, 56 and 65% with 200 µg of OGs − Ac. Gene expression results showed the upregulation of genes involved in the antifungal defensins, lignans and the phytoalexin pisatin pathways and a priming effect in the basal defense, SA and ROS gene markers as a response to OGs. The reduction of the efficient dose in OGs + Ac is suggesting that acetylation is necessary for some specific responses. Our work provides the first evidence for the potential of OGs in the defense induction in pea against Aphanomyces root rot. Full article
Figures

Figure 1

Open AccessPerspective Photophysics and Photochemistry of Canonical Nucleobases’ Thioanalogs: From Quantum Mechanical Studies to Time Resolved Experiments
Molecules 2017, 22(6), 998; https://doi.org/10.3390/molecules22060998
Received: 7 May 2017 / Revised: 10 June 2017 / Accepted: 12 June 2017 / Published: 18 June 2017
Cited by 3 | PDF Full-text (3378 KB) | HTML Full-text | XML Full-text
Abstract
Interest in understanding the photophysics and photochemistry of thiated nucleobases has been awakened because of their possible involvement in primordial RNA or their potential use as photosensitizers in medicinal chemistry. The interpretation of the photodynamics of these systems, conditioned by their intricate potential
[...] Read more.
Interest in understanding the photophysics and photochemistry of thiated nucleobases has been awakened because of their possible involvement in primordial RNA or their potential use as photosensitizers in medicinal chemistry. The interpretation of the photodynamics of these systems, conditioned by their intricate potential energy surfaces, requires the powerful interplay between experimental measurements and state of the art molecular simulations. In this review, we provide an overview on the photophysics of natural nucleobases’ thioanalogs, which covers the last 30 years and both experimental and computational contributions. For all the canonical nucleobase’s thioanalogs, we have compiled the main steady state absorption and emission features and their interpretation in terms of theoretical calculations. Then, we revise the main topographical features, including stationary points and interstate crossings, of their potential energy surfaces based on quantum mechanical calculations and we conclude, by combining the outcome of different spectroscopic techniques and molecular dynamics simulations, with the mechanism by which these nucleobase analogs populate their triplet excited states, which are at the origin of their photosensitizing properties. Full article
(This article belongs to the Special Issue Experimental and Computational Photochemistry of Bioorganic Molecules)
Figures

Figure 1

Back to Top