Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = zoonotic transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9488 KiB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 - 1 Aug 2025
Viewed by 148
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

11 pages, 1458 KiB  
Article
Molecular Epidemiology and Genetic Context of optrA-Carrying Linezolid-Resistant Enterococci from Humans and Animals in South Korea
by Younggwon On, Sung Young Lee, Jung Sik Yoo and Jung Wook Kim
Antibiotics 2025, 14(6), 571; https://doi.org/10.3390/antibiotics14060571 - 3 Jun 2025
Viewed by 592
Abstract
Objectives: Linezolid resistance among Enterococcus species poses a growing clinical and public health concern, especially due to the dissemination of transferable resistance genes, such as optrA. This study aimed to evaluate the prevalence of linezolid resistance and to characterize the molecular epidemiology [...] Read more.
Objectives: Linezolid resistance among Enterococcus species poses a growing clinical and public health concern, especially due to the dissemination of transferable resistance genes, such as optrA. This study aimed to evaluate the prevalence of linezolid resistance and to characterize the molecular epidemiology and genetic contexts of optrA-positive linezolid-resistant Enterococcus (LRE) isolates from clinical and animal sources in South Korea. Methods: A total of 2156 Enterococcus isolates, collected through nationwide surveillance from hospitalized patients and healthy livestock (pigs, cattle, and chickens) between 2017 and 2019, were retrospectively analyzed. Phenotypic susceptibility testing, optrA gene screening, and whole-genome sequencing were performed to investigate genetic environments and phylogenetic relationships. Results: The prevalence of linezolid resistance was 0.2% in clinical isolates, 3.3% in pigs, 4.3% in cattle, and 1.4% in chickens. optrA-positive linezolid-resistant isolates were less frequent, with rates of 0.1%, 1.4%, 0.9%, and 1.0%, respectively. Multilocus sequence typing identified sequence types (STs) 330 and ST476 in E. faecalis from humans, with no shared STs between human and livestock isolates. The optrA gene was located either chromosomally, frequently associated with transposon Tn6674, or on multidrug resistance plasmids. Notably, optrA variants exhibited host-specific distribution patterns. Phylogenetic analysis demonstrated considerable genomic diversity, and Korean ST476 isolates were genetically related to international strains reported from livestock, poultry products, and wild birds, suggesting potential global dissemination. Conclusions: This study provides a comprehensive, nationally representative assessment of linezolid resistance in South Korea. The findings highlight the zoonotic potential and possible international dissemination of optrA-carrying ST476 lineages, underscoring the need for integrated One Health surveillance to monitor and control the spread of transferable resistance genes. Full article
Show Figures

Figure 1

15 pages, 355 KiB  
Article
Carriage of Rifampicin- and Multidrug-Resistant Pseudomonas aeruginosa in Apparently Healthy Camels: A View Through a Zoonosis Lens
by Dalia Hamza and Hala M. Zaher
Microbiol. Res. 2025, 16(6), 107; https://doi.org/10.3390/microbiolres16060107 - 25 May 2025
Viewed by 743
Abstract
Pseudomonas aeruginosa poses a significant global concern in human and veterinary medicine due to its resistance to multiple antimicrobials. Limited research has been carried out on rifampicin-resistant P. aeruginosa, particularly in food-producing animals such as camels. Therefore, the purpose of this study [...] Read more.
Pseudomonas aeruginosa poses a significant global concern in human and veterinary medicine due to its resistance to multiple antimicrobials. Limited research has been carried out on rifampicin-resistant P. aeruginosa, particularly in food-producing animals such as camels. Therefore, the purpose of this study was to investigate the occurrence of rifampicin- and multidrug-resistant P. aeruginosa in apparently healthy camels. Nasal swabs and tissue samples were collected from one hundred apparently healthy slaughtered camels, and they were subjected to bacteriological isolation and identification of P. aeruginosa. Antimicrobial susceptibility testing was performed, followed by phenotypic and genotypic detection of ESBL-producing P. aeruginosa isolates. Twenty-two P. aeruginosa strains were investigated for the rpoB gene, including rifampicin-resistant isolates. P. aeruginosa was found in 16% (16/100) of the investigated apparently healthy slaughtered camels. P. aeruginosa was confirmed in sixteen and six isolates from nasal swabs and tissue samples, respectively, by pigment production on cetrimide agar. The most predominant beta-lactamase-encoding gene in twenty-two ESBL-producing isolates was blaPER (40.9%), followed by blaCTX-M (36.4%), blaTEM (31.8%), and blaSHV (27.3%). Multidrug resistance was identified in 54.5% (12/22) of P. aeruginosa isolates. The rpoB gene was detected in 11 (50%) out of 22 P. aeruginosa strains, with eleven positive isolates being regarded as rifampicin-resistant. Furthermore, phylogenetic analysis of a rifampicin- and multidrug-resistant P. aeruginosa rpoB gene sequence revealed a genetic relatedness to P. aeruginosa strains retrieved from human clinical cases. In conclusion, this study provides a snapshot on the occurrence of rifampicin- and multidrug-resistant P. aeruginosa among apparently healthy camels. In line with a possible risk of animal-to-human transfer, further molecular studies on rifampicin-resistant P. aeruginosa in animals are required to better understand and combat this serious zoonotic pathogen. Full article
Show Figures

Figure 1

12 pages, 675 KiB  
Article
Bats as Hosts of Antimicrobial-Resistant Mammaliicoccus lentus and Staphylococcus epidermidis with Zoonotic Relevance
by Vanessa Silva, Manuela Caniça, Rani de la Rivière, Paulo Barros, João Alexandre Cabral, Patrícia Poeta and Gilberto Igrejas
Vet. Sci. 2025, 12(4), 322; https://doi.org/10.3390/vetsci12040322 - 1 Apr 2025
Viewed by 876
Abstract
Bats are increasingly recognized as reservoirs for antimicrobial-resistant bacteria, playing a potential role in the dissemination of resistance genes across species and regions. In this study, 105 bats from 19 species in Portugal were sampled to investigate the presence, antimicrobial resistance, and genetic [...] Read more.
Bats are increasingly recognized as reservoirs for antimicrobial-resistant bacteria, playing a potential role in the dissemination of resistance genes across species and regions. In this study, 105 bats from 19 species in Portugal were sampled to investigate the presence, antimicrobial resistance, and genetic characteristics of Mammaliicoccus and Staphylococcus isolates. Thirteen Mammaliicoccus lentus and Staphylococcus epidermidis were recovered. Antimicrobial susceptibility testing revealed multidrug resistance in three isolates, with S. epidermidis carrying mph(C), msr(A), and dfrC genes, and M. lentus harboring salB, tet(K), and str. Notably, qacA was detected in S. epidermidis, highlighting its plasmid-associated potential for horizontal gene transfer to more pathogenic bacteria. Heavy metal resistance genes (arsB and cadD) were also identified, suggesting the role of environmental factors in co-selecting antimicrobial resistance. Molecular typing revealed the S. epidermidis strain as ST297, a clone associated with both healthy humans and invasive infections. These findings emphasize the need for monitoring bats as reservoirs of resistance determinants, particularly in the context of zoonotic and environmental health. The presence of mobile genetic elements and plasmids further underscores the potential for the dissemination of resistance. This study reinforces the importance of adopting a One Health approach to mitigate the risks associated with antimicrobial resistance. Full article
Show Figures

Figure 1

43 pages, 12081 KiB  
Article
Coevolution of Lentiviral Vif with Host A3F and A3G: Insights from Computational Modelling and Ancestral Sequence Reconstruction
by David Nicolas Giuseppe Huebert, Atefeh Ghorbani, Shaw Yick Brian Lam and Mani Larijani
Viruses 2025, 17(3), 393; https://doi.org/10.3390/v17030393 - 10 Mar 2025
Viewed by 847
Abstract
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across [...] Read more.
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across diverse primate species. By constructing 3D structural homology models and integrating ancestral sequence reconstruction (ASR), we identified patterns of sequence diversity, structural conservation, and functional adaptation. Inactive CD1 (Catalytic Domain 1) domains displayed greater sequence diversity and more positive surface charges than active CD2 domains, aiding nucleotide chain binding and intersegmental transfer. Despite variability, the CD2 DNA-binding grooves remained structurally consistent with conserved residues maintaining critical functions. A3F and A3G diverged in loop 7’ interaction strategies, utilising distinct molecular interactions to facilitate their roles. Vif exhibited charge variation linked to host species, reflecting its coevolution with A3 proteins. These findings illuminate how structural adaptations and charge dynamics enable both restriction factors and their viral antagonists to adapt to selective pressures. Our results emphasize the importance of studying structural evolution in host–virus interactions, with implications for understanding immune defense mechanisms, zoonotic risks, and viral evolution. This work establishes a foundation for further exploration of restriction factor diversity and coevolution across species. Full article
(This article belongs to the Special Issue Host-Mediated Viral Mutations: APOBECs, ADARs, and Beyond)
Show Figures

Figure 1

13 pages, 992 KiB  
Article
Development and Validation of a Differentiating Infected from Vaccinated Animals (DIVA) Enzyme-Linked Immunosorbent Assay (ELISA) Strategy for Distinguishing Between Hendra-Infected and Vaccinated Horses
by Leanne McNabb, Amy McMahon, Ezana Getachew Woube, Kalpana Agnihotri, Axel Colling, Christopher C. Broder, Indre Kucinskaite-Kodze, Rasa Petraityte-Burneikiene, Timothy R. Bowden and Kim Halpin
Viruses 2025, 17(3), 354; https://doi.org/10.3390/v17030354 - 28 Feb 2025
Viewed by 1160
Abstract
Hendra virus (HeV) is a bat-borne zoonotic agent which can cause a severe and highly fatal disease and can be transferred from animals to humans. It has caused over 100 deaths in horses since it was discovered in 1994. Four out of seven [...] Read more.
Hendra virus (HeV) is a bat-borne zoonotic agent which can cause a severe and highly fatal disease and can be transferred from animals to humans. It has caused over 100 deaths in horses since it was discovered in 1994. Four out of seven infected humans have died. Since the release of the HeV vaccine (Equivac® HeV Hendra Virus Vaccine for Horses, Zoetis Australia Pty Ltd., Rhodes, NSW 2138) in Australia, there has been an urgent requirement for a serological test for differentiating infected from vaccinated animals (DIVA). All first-line diagnostic serological assays at the Australian Centre for Disease Preparedness (ACDP) incorporate recombinant HeV soluble G glycoprotein (sG) as the antigen, which is also the only immunogen present in the Equivac® HeV vaccine. Problems therefore arose in that antibody testing results were unable to distinguish between prior vaccination or infection with HeV. This study describes the development of a HeV DIVA ELISA strategy using recombinant sG and HeV nucleoprotein (N), paired with specific monoclonal antibodies in a competition ELISA format. The validation of this assay strategy was performed using a positive cohort of 19 serum samples representing post-infection sera, a negative cohort of 1138 serum samples representing horse sera collected pre-vaccine release and a vaccination cohort of 502 serum samples from horses previously vaccinated with Equivac® HeV vaccine. For the sG glycoprotein, the diagnostic sensitivity (DSe) was 100.0% (95% CI: 99.3–100.0%) and diagnostic specificity (DSp) 99.91% (95% CI: 99.5–100.0%), using a percentage inhibition cut-off value of >36, whereas for the N protein, DSe was 100.0% (95% CI: 82.4–100.0%) and DSp 100.0% (95% CI: 99.7–100.0%), using a percentage inhibition cut-off value of >49. Taken together, these results demonstrate that the HeV DIVA ELISA strategy developed here is now an essential and critical component of the testing algorithm for HeV serology testing in Australia. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

18 pages, 1183 KiB  
Review
The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies
by Zubeiru Bukari, Toyin Emmanuel, Jude Woodward, Richard Ferguson, Martha Ezughara, Nikhil Darga and Bruno Silvester Lopes
Trop. Med. Infect. Dis. 2025, 10(1), 25; https://doi.org/10.3390/tropicalmed10010025 - 16 Jan 2025
Cited by 4 | Viewed by 4079
Abstract
Antimicrobial resistance (AMR) in Campylobacter species, particularly C. jejuni and C. coli, poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated [...] Read more.
Antimicrobial resistance (AMR) in Campylobacter species, particularly C. jejuni and C. coli, poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated poultry. Extensive exposure to antibiotics in human and veterinary medicine creates selection pressure, driving resistance through mechanisms such as point mutations, horizontal gene transfer, and efflux pumps. Resistance to fluoroquinolones, macrolides, and tetracyclines complicates treatment and increases the risk of severe infections. Drug-resistant Campylobacter is transmitted to humans via contaminated food, water, and direct contact with animals, highlighting its zoonotic potential. Addressing this challenge requires effective interventions. Pre-harvest strategies like biosecurity and immune-based methods reduce bacterial loads on farms, while post-harvest measures, including carcass decontamination and freezing, limit contamination. Emerging approaches, such as bacteriocins and natural antimicrobials, offer chemical-free alternatives. Integrated, multidisciplinary interventions across the food chain are essential to mitigate AMR transmission and enhance food safety. Sustainable agricultural practices, antimicrobial stewardship, and innovative solutions are critical to curbing Campylobacter resistance and protecting global public health. Our review examines the dynamics of antimicrobial resistance in Campylobacter and presents current strategies to mitigate Campylobacter-related AMR, offering valuable insights for antimicrobial control in the poultry industry. Full article
Show Figures

Figure 1

23 pages, 1137 KiB  
Review
Exploring Future Pandemic Preparedness Through the Development of Preventive Vaccine Platforms and the Key Roles of International Organizations in a Global Health Crisis
by Jihee Jeon and Eunyoung Kim
Vaccines 2025, 13(1), 56; https://doi.org/10.3390/vaccines13010056 - 10 Jan 2025
Cited by 3 | Viewed by 3417
Abstract
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World [...] Read more.
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO), and the European Center for Disease Prevention and Control (ECDC), have developed strategies to combat these health threats. The need for rapid vaccine development has been highlighted by Coronavirus disease 2019 (COVID-19), and mRNA technology has shown promise as a platform. While the acceleration of vaccine development has been successful, concerns have been raised about the technical limits, safety, supply, and distribution of vaccines. Objective: This study analyzes the status of vaccine platform development in global pandemics and explores ways to respond to future pandemic crises through an overview of the roles of international organizations and their support programs. It examines the key roles and partnerships of international organizations such as the World Health Organization (WHO), vaccine research and development expertise of the Coalition for Epidemic Preparedness Innovations (CEPI), control of the vaccine supply chain and distribution by the Global Alliance for Vaccines and Immunization (GAVI), and technology transfer capabilities of the International Vaccine Institute (IVI) in supporting the development, production, and supply of vaccine platform technologies for pandemic priority diseases announced by WHO and CEPI and analyzes their vaccine support programs and policies to identify effective ways to rapidly respond to future pandemics caused by emerging infectious diseases. Methods: This study focused on vaccine platform technology and the key roles of international organizations in the pandemic crisis. Literature data on vaccine platform development was collected, compared, and analyzed through national and international literature data search sites, referring to articles, journals, research reports, publications, books, guidelines, clinical trial data, and related reports. In addition, the websites of international vaccine support organizations, such as WHO, CEPI, GAVI, and IVI, were used to examine vaccine support projects, initiatives, and collaborations through literature reviews and case study methods. Results: The COVID-19 pandemic brought focus on the necessity for developing innovative vaccine platforms. Despite initial concerns, the swift integration of cutting-edge development technologies, mass production capabilities, and global collaboration have made messenger RNA (mRNA) vaccines a game-changing technology. As a result of the successful application of novel vaccine platforms, it is important to address the remaining challenges, including technical limits, safety concerns, and equitable global distribution. To achieve this, it is essential to review the regulatory, policy, and support initiatives that have been implemented in response to the COVID-19 pandemic, with particular emphasis on the key stages of vaccine development, production, and distribution, to prepare for future pandemics. An analysis of the status of vaccine development for priority pandemic diseases implies the need for balanced vaccine platform development. Also, international organizations such as WHO, CEPI, GAVI, and IVI play key roles in pandemic preparedness and the development and distribution of preventive vaccines. These organizations collaborated to improve accessibility to vaccines, strengthen the global response to infectious diseases, and address global health issues. The COVID-19 pandemic response demonstrates how the synergistic collaboration of WHO’s standardized guidelines, CEPI’s vaccine research and development expertise, GAVI’s control of the vaccine supply chain and distribution, and IVI’s technology transfer capabilities can be united to create a successful process for vaccine development and distribution. Conclusions: In preparation for future pandemics, a balanced vaccine platform development is essential. It should include a balanced investment in both novel technologies such as mRNA and viral vector-based vaccines and traditional platforms. The goal is to develop vaccine platform technologies that can be applied to emerging infectious diseases efficiently and increase manufacturing and distribution capabilities for future pandemics. Moreover, international vaccine support organizations should play key roles in setting the direction of global networking and preparing for international vaccine support programs to address the limitations of previous pandemic responses. As a result, by transforming future pandemic threats from unpredictable crises to surmountable challenges, it is expected to strengthen global health systems and reduce the social and economic burden of emerging infectious diseases in the long term. Full article
Show Figures

Figure 1

31 pages, 480 KiB  
Article
Analysis of a Mathematical Model of Zoonotic Visceral Leishmaniasis (ZVL) Disease
by Goni Umar Modu, Suphawat Asawasamrit, Abdulfatai Atte Momoh, Mathew Remilekun Odekunle, Ahmed Idris and Jessada Tariboon
Mathematics 2024, 12(22), 3574; https://doi.org/10.3390/math12223574 - 15 Nov 2024
Viewed by 1136
Abstract
This research paper attempts to describe the transmission dynamic of zoonotic visceral leishmaniasis with the aid of a mathematical model by considering the asymptomatic stages in humans and animals. The disease is endemic in several countries. Data used in the research are obtained [...] Read more.
This research paper attempts to describe the transmission dynamic of zoonotic visceral leishmaniasis with the aid of a mathematical model by considering the asymptomatic stages in humans and animals. The disease is endemic in several countries. Data used in the research are obtained from the literature while some are assumed based on the disease dynamic. The consideration of both asymptomatic and the symptomatic infected individuals is incorporated in both humans and animals (reservoir), as well as lines of treatment for the human population. It is found that the model has two fixed points; the VL-free fixed point and the VL-endemic fixed point. Stability analysis of the fixed points shows that the VL-free fixed point is globally asymptotically stable whenever the basic reproduction number is less than one and the VL-endemic fixed point is globally asymptotically stable whenever the basic reproduction number is greater than one. Sensitivity analysis is conducted for the parameters in the basic reproduction number, and the profile of each state variable is also depicted using the data obtained from the literature and those assumed. The transmission probability from infected sandflies to animals, transmission probability from infected animals to sandflies, per capita biting rate of sandflies of animals, and rate of transfer from symptomatic infected animals to the recovered class are among the most sensitive parameters that have the greatest influence on the basic reproduction number. Moreover, the value of the basic reproduction number is obtained to be 0.98951, which may require further study, as the margin between potential disease control and outbreak is thin. Full article
(This article belongs to the Special Issue Mathematical Biology and Its Applications to Disease Modeling)
Show Figures

Figure 1

21 pages, 3008 KiB  
Article
Bacterial Community of Heermann’s Gull (Larus heermanni): Insights into Their Most Common Species and Their Functional Role during the Breeding Season in the Gulf of California
by Enrico A. Ruiz, Araceli Contreras-Rodríguez, Oliva Araiza, Ma G. Aguilera-Arreola, Juan A. Hernández-García, José J. Flores-Martínez, Víctor Sánchez-Cordero and Zulema Gomez-Lunar
Diversity 2024, 16(10), 617; https://doi.org/10.3390/d16100617 - 3 Oct 2024
Cited by 1 | Viewed by 2678
Abstract
The seabird intestinal microbiota, or bacteriome, predominantly consists of bacteria that establish during embryonic development through vertical transfer from females and horizontal transfer during growth and copulation. This study focuses on the Heermann’s Gull (Larus heermanni), a seabird that breeds mainly [...] Read more.
The seabird intestinal microbiota, or bacteriome, predominantly consists of bacteria that establish during embryonic development through vertical transfer from females and horizontal transfer during growth and copulation. This study focuses on the Heermann’s Gull (Larus heermanni), a seabird that breeds mainly within the Gulf of California. Our goal was to understand its gut bacteriome composition and its implications for conservation and public health. Using microbiological techniques, 16S rRNA gene sequencing, and mass spectrometry, we characterized the HG gut bacteriome and compared it with other bird species. Our findings reveal a diverse bacteriome, particularly in the intestine and rectum, with dominant phyla including Firmicutes, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria. Seasonal and sex-related differences were observed, with significant correlations between some pairs of bacteria. Notably, we identified various pathogens and potential zoonotic bacteria, underscoring the public health risks associated with Heermann’s Gull interaction with humans and other animals. These results highlight the importance of the Heermann’s Gull gut bacteriome in nutrient production, pathogen control, and digestive health, and emphasize the need for further research on pathogen transmission involving seabirds. Our study provides crucial insights for conservation strategies and underscores the role of wild birds in the epidemiology of zoonotic diseases. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

10 pages, 867 KiB  
Article
A Systematic Assessment of Leishmania donovani Infection in Domestic and Wild Animal Reservoir Hosts of Zoonotic Visceral Leishmaniasis in India
by Gajala Deethamvali Ghouse Peer, Anjali Priyadarshini, Archana Gupta, Arpana Vibhuti, Elcio Leal, Antonio Charlys da Costa, Carlos Prudencio, Kirtanjot Kaur, Saheem Ahmad, V. Samuel Raj and Ramendra Pati Pandey
Microbiol. Res. 2024, 15(3), 1645-1654; https://doi.org/10.3390/microbiolres15030109 - 23 Aug 2024
Cited by 2 | Viewed by 3672
Abstract
Leishmaniasis is a neglected disease with a global spread that affects both domestic and wild animals in addition to people. Leishmania donovani is the suspected anthroponotic cause of visceral leishmaniasis (VL) in India, where it is an endemic disease. The reservoir hosts play [...] Read more.
Leishmaniasis is a neglected disease with a global spread that affects both domestic and wild animals in addition to people. Leishmania donovani is the suspected anthroponotic cause of visceral leishmaniasis (VL) in India, where it is an endemic disease. The reservoir hosts play a crucial role in the life cycle of the Leishmania parasite. The complicated connection between the pathogen, vector, and reservoir exhibits geographical and temporal diversity. Human-to-human and, to a lesser extent, human-to-animal transmission are the principal mechanisms for the maintenance of anthroponotic diseases. A number of animals were examined for the presence of Leishmania parasites and the findings were reviewed in order to examine the role of animal reservoirs in domestic transmission of cutaneous leishmaniasis in endemic regions of India. The analysis objective was to assess the research conducted on domestic animals’ propensity to spread L. donovani in endemic areas, with a particular emphasis on how proximity and animal density may impact the prevalence of human leishmaniasis. Species of the L. donovani complex have distinct enzootic, zoonotic, and anthroponotic life cycles that depend on the environment. The majority of Leishmania spp. are zoonotic, spreading from non-human mammals to humans. Many nations have leishmaniasis as an endemic disease, and the Indian subcontinent (ISC) has an estimated two to three lakh people who are at risk. This systematic review evaluates the gaps in our understanding of disease transmission that contradict conventional wisdom about the reservoir(s) of visceral leishmaniasis and efforts to manage it on the Indian subcontinent. Fundamental concerns in VL epidemiology and ecology will be clarified by a better understanding of L. donovani infection in domestic animals and its transfer to sandflies. A deliberate, systematic search was conducted on PubMed, Science Direct, and Google Scholar using keywords such as “Leishmania donovani”, “zoonotic visceral leishmaniasis”, and “wild animal reservoir for Leishmania donovani”. A total of 530 potentially relevant references were obtained from these databases, and 507 were not considered due to copy avoidance, irrelevant titles, research publications from nations other than India, or modified compositions. Among the remaining 23 investigations, 20 were rejected, and only 3 were included in the present study. Finally, three research papers with 867 goats, 161 cattle, 106 chickens, 26 sheep, three buffaloes, 406 dogs, and 309 rats were reported. Along with these data, studies across Asian and African countries that are considered VL-endemic areas have been discussed. According to the review, goats are the epidemic’s primary host and possible reservoir in several regions of India. In the endemic regions of the disease, some species of rodents, along with the canines, appear to be maintaining the L. donovani transmission cycle. Full article
Show Figures

Figure 1

13 pages, 1160 KiB  
Review
Plasmodium cynomolgi: What Should We Know?
by Fauzi Muh, Ariesta Erwina, Fadhila Fitriana, Jadidan Hada Syahada, Angga Dwi Cahya, Seongjun Choe, Hojong Jun, Triwibowo Ambar Garjito, Josephine Elizabeth Siregar and Jin-Hee Han
Microorganisms 2024, 12(8), 1607; https://doi.org/10.3390/microorganisms12081607 - 7 Aug 2024
Cited by 2 | Viewed by 5408
Abstract
Even though malaria has markedly reduced its global burden, it remains a serious threat to people living in or visiting malaria-endemic areas. The six Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale curtisi, Plasmodium ovale wallikeri [...] Read more.
Even though malaria has markedly reduced its global burden, it remains a serious threat to people living in or visiting malaria-endemic areas. The six Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale curtisi, Plasmodium ovale wallikeri and Plasmodium knowlesi) are known to associate with human malaria by the Anopheles mosquito. Highlighting the dynamic nature of malaria transmission, the simian malaria parasite Plasmodium cynomolgi has recently been transferred to humans. The first human natural infection case of P. cynomolgi was confirmed in 2011, and the number of cases is gradually increasing. It is assumed that it was probably misdiagnosed as P. vivax in the past due to its similar morphological features and genome sequences. Comprehensive perspectives that encompass the relationships within the natural environment, including parasites, vectors, humans, and reservoir hosts (macaques), are required to understand this zoonotic malaria and prevent potential unknown risks to human health. Full article
Show Figures

Figure 1

17 pages, 1879 KiB  
Article
Risk Communication on Zoonoses and Antimicrobial Resistance—How Do Exotic Pet Owners Perceive the Communication of Their Veterinarians?
by Amelie Lisa Arnecke, Stefan Schwarz, Antina Lübke-Becker, Katharina Charlotte Jensen, Christina Herre and Mahtab Bahramsoltani
Animals 2024, 14(14), 2035; https://doi.org/10.3390/ani14142035 - 10 Jul 2024
Cited by 2 | Viewed by 2439
Abstract
Exotic animals traded and kept as pets can transmit a variety of diseases to humans and other animals, and vice versa. Therefore, it is essential for pet owners, particularly vulnerable groups, to be informed about associated risks. Veterinarians play a crucial role in [...] Read more.
Exotic animals traded and kept as pets can transmit a variety of diseases to humans and other animals, and vice versa. Therefore, it is essential for pet owners, particularly vulnerable groups, to be informed about associated risks. Veterinarians play a crucial role in informing pet owners about health risks associated with zoonotic pathogens and antimicrobial resistance (AMR) and should, therefore, have good communication skills to effectively transfer information to pet owners. Thus, exotic pet owners in Germany were surveyed on animal husbandry, veterinary consultation and risk communication. To evaluate the perception of communication, a self-developed questionnaire was used to derive a communication score. The perception of veterinarian communication received a high average score showing a high level of satisfaction. The duration of the veterinarian–client relationship was associated with better communication perception, and the frequency of communication on zoonoses and AMR was associated with the presence of a permanent veterinarian. However, the results indicated that the frequency of disseminated information on zoonoses and/or AMR from veterinarians was lower than desired by the pet owners. Therefore, more educational material on zoonoses and AMR should be made available, and the awareness concerning risk communication should be increased by further education and training at universities. Full article
(This article belongs to the Special Issue Education and Communication in Veterinary Clinical Practice)
Show Figures

Figure 1

13 pages, 1159 KiB  
Article
Evaluation of the Humoral Response after Immunization with a Chimeric Subunit Vaccine against Shiga Toxin-Producing Escherichia coli in Pregnant Sows and Their Offspring
by Roberto M. Vidal, David A. Montero, Adriana Bentancor, Carolina Arellano, Alhejandra Alvarez, Cecilia Cundon, Ximena Blanco Crivelli, Felipe Del Canto, Juan C. Salazar and Angel A. Oñate
Vaccines 2024, 12(7), 726; https://doi.org/10.3390/vaccines12070726 - 29 Jun 2024
Cited by 1 | Viewed by 2117
Abstract
Shiga toxin-producing Escherichia coli (STEC) poses a significant public health risk due to its zoonotic potential and association with severe human diseases, such as hemorrhagic colitis and hemolytic uremic syndrome. Ruminants are recognized as primary reservoirs for STEC, but swine also contribute to [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) poses a significant public health risk due to its zoonotic potential and association with severe human diseases, such as hemorrhagic colitis and hemolytic uremic syndrome. Ruminants are recognized as primary reservoirs for STEC, but swine also contribute to the epidemiology of this pathogen, highlighting the need for effective prevention strategies across species. Notably, a subgroup of STEC that produces Shiga toxin type 2e (Stx2e) causes edema disease (ED) in newborn piglets, economically affecting pig production. This study evaluates the immunogenicity of a chimeric protein-based vaccine candidate against STEC in pregnant sows and the subsequent transfer of immunity to their offspring. This vaccine candidate, which includes chimeric proteins displaying selected epitopes from the proteins Cah, OmpT, and Hes, was previously proven to be immunogenic in pregnant cows. Our analysis revealed a broad diversity of STEC serotypes within swine populations, with the cah and ompT genes being prevalent, validating them as suitable antigens for vaccine development. Although the hes gene was detected less frequently, the presence of at least one of these three genes in a significant proportion of STEC suggests the potential of this vaccine to target a wide range of strains. The vaccination of pregnant sows led to an increase in specific IgG and IgA antibodies against the chimeric proteins, indicating successful immunization. Additionally, our results demonstrated the effective passive transfer of maternal antibodies to piglets, providing them with immediate, albeit temporary, humoral immunity against STEC. These humoral responses demonstrate the immunogenicity of the vaccine candidate and are preliminary indicators of its potential efficacy. However, further research is needed to conclusively evaluate its impact on STEC colonization and shedding. This study highlights the potential of maternal vaccination to protect piglets from ED and contributes to the development of vaccination strategies to reduce the prevalence of STEC in various animal reservoirs. Full article
(This article belongs to the Special Issue Vaccines and Animal Health)
Show Figures

Figure 1

10 pages, 1745 KiB  
Article
High-Performance Detection of Mycobacterium bovis in Milk Using Recombinase-Aided Amplification–Clustered Regularly Interspaced Short Palindromic Repeat–Cas13a–Lateral Flow Detection
by Jieru Wang, Nan Wang, Lei Xu, Xiaoyu Zeng, Junsheng Cheng, Xiaoqian Zhang, Yinghui Zhang, Dongdong Yin, Jiaojiao Gou, Xiaocheng Pan and Xiaojie Zhu
Foods 2024, 13(11), 1601; https://doi.org/10.3390/foods13111601 - 21 May 2024
Cited by 2 | Viewed by 1971
Abstract
Mycobacterium bovis (M. bovis), the microorganism responsible for bovine tuberculosis (bTB), is transferred to people by the ingestion of unpasteurized milk and unprocessed fermented milk products obtained from animals with the infection. The identification of M. bovis in milk samples is [...] Read more.
Mycobacterium bovis (M. bovis), the microorganism responsible for bovine tuberculosis (bTB), is transferred to people by the ingestion of unpasteurized milk and unprocessed fermented milk products obtained from animals with the infection. The identification of M. bovis in milk samples is of the utmost importance to successfully prevent zoonotic diseases and maintain food safety. This study presents a comprehensive description of a highly efficient molecular test utilizing recombinase-aided amplification (RPA)–clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) 13a–lateral flow detection (LFD) for M. bovis detection. In contrast to ELISA, RPA–CRISPR–Cas13a–LFD exhibited greater accuracy and sensitivity in the detection of M. bovis in milk, presenting a detection limit of 2 × 100 copies/μL within a 2 h time frame. The two tests exhibited a moderate level of agreement, as shown by a kappa value of 0.452 (95%CI: 0.287–0.617, p < 0.001). RPA–CRISPR–Cas13a–LFD holds significant potential as a robust platform for pathogen detection in complex samples, thereby enabling the more dependable regulation of food safety examination, epidemiology research, and medical diagnosis. Full article
Show Figures

Figure 1

Back to TopTop