Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = zirconium (IV) chloride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1826 KiB  
Article
Zirconium Containing Periodic Mesoporous Organosilica: The Effect of Zr on CO2 Sorption at Ambient Conditions
by Chamila A. Gunathilake, Rohan S. Dassanayake, Chacrawarthige A. N. Fernando and Mietek Jaroniec
J. Compos. Sci. 2022, 6(6), 168; https://doi.org/10.3390/jcs6060168 - 9 Jun 2022
Cited by 9 | Viewed by 2547
Abstract
Two series of zirconium-incorporated-periodic-mesoporous-organosilica (Zr–PMO) materials were successfully prepared, via a co-condensation strategy, in the presence of Pluronic P123 triblock copolymer. The first series of Zr–PMO was prepared using tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS), tetraethylorthosilicate (TEOS), and zirconyl chloride octahydrate(ZrCO), denoted as Zr-I-PMO, where I refers [...] Read more.
Two series of zirconium-incorporated-periodic-mesoporous-organosilica (Zr–PMO) materials were successfully prepared, via a co-condensation strategy, in the presence of Pluronic P123 triblock copolymer. The first series of Zr–PMO was prepared using tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS), tetraethylorthosilicate (TEOS), and zirconyl chloride octahydrate(ZrCO), denoted as Zr-I-PMO, where I refers to ICS. The second series was synthesized using bis(triethoxysilyl)benzene (BTEE), TEOS, and ZrCO as precursors, named as Zr-B-PMO, where B refers to BTEE. Zr–PMO samples exhibit type (IV) adsorption isotherms, with a distinct H2-hysteresis loop and well-developed structural parameters, such as pore volume, pore width, high surface area, and narrow pore-size distribution. Structural properties were studied by varying the Zr:Si ratio, adding TEOS at different time intervals, and changing the amount of block copolymer-Pluronic P123 used as well as the calcination temperature. Surface characteristics were tailored by precisely controlling the Zr:Si ratio, upon varying the amount of TEOS present in the mesostructures. The addition of TEOS at different synthesis stages, notably, enhanced the pore size and surface area of the resulting Zr-I-PMO samples more than the Zr-B-PMO samples. Changing the amount of block copolymer, also, played a significant role in altering the textural and morphological properties of the Zr-I-PMO and Zr-B-PMO samples. Optimizing the amount of Pluronic P123 added is crucial for tailoring the surface properties of Zr–PMOs. The prepared Zr–PMO samples were examined for use in CO2 sorption, at ambient temperature and pressure (25 °C, 1.2 bar pressure). Zr–PMO samples displayed a maximum CO2 uptake of 2.08 mmol/g, at 25 °C and 1.2 bar pressure. However, analogous zirconium samples, without any bridging groups, exhibited a significantly lower CO2 uptake, of 0.72 mmol/g, under the same conditions. The presence of isocyanurate- and benzene-bridging groups in Zr-I-PMO and Zr-B-PMO samples enhances the CO2 sorption. Interestingly, results illustrate that Zr–PMO materials show potential in capturing CO2, at ambient conditions. Full article
(This article belongs to the Special Issue Metal Composites)
Show Figures

Figure 1

27 pages, 12193 KiB  
Article
Nano-ZrO2@C, Nano-(ZrC, ZrO2)@C and Nano-ZrC@C Composites Prepared by Plasma-Assisted Carbonization of Zr-Loaded Iminodiacetate-Functionalized Styrene-Divinylbenzene Copolymers
by Alejandro Martiz, Zoltán Károly, Attila Domján, Miklós Mohai, Laura Bereczki, László Trif, Attila Farkas, Krisztina László, Alfréd Menyhárd and László Kótai
Inorganics 2022, 10(6), 77; https://doi.org/10.3390/inorganics10060077 - 2 Jun 2022
Cited by 6 | Viewed by 3166
Abstract
We have developed an easy route to prepare (nano-ZrO2,nano-ZrCx)@C composites with varying ZrO2/ZrCx content. The process consists of preparing a zirconium-loaded, iminodiacetate-functionalized styrene-divinylbenzene (STY-DVB) copolymer, and its subsequent carbonization in a tube furnace and/or a thermal [...] Read more.
We have developed an easy route to prepare (nano-ZrO2,nano-ZrCx)@C composites with varying ZrO2/ZrCx content. The process consists of preparing a zirconium-loaded, iminodiacetate-functionalized styrene-divinylbenzene (STY-DVB) copolymer, and its subsequent carbonization in a tube furnace and/or a thermal plasma reactor. Depending on the zirconium salt used (zirconyl chloride, zirconyl nitrate or zirconium (IV) sulfate) in the Zr loading, the Zr-loaded resins resulted in ZrO2@C pre-pyrolizates with C to Zr molar ratios of 5.8, 6.8 and 6.60. This carbon surplus is sufficient for the partial or even complete reduction of ZrO2 into ZrC0.58 at 1400 °C. The reaction products also contain 5 to 55 mass% residual free carbon. The plasma processing of the ZrO2@C composite formed at 1000 °C in a tube furnace led to ZrC0.94@C composites. The transformation of amorphous carbon content during the plasma treatment strongly depended on the atmosphere (He or H2) in the reactor and the anion type of the Zr salt. In the presence of He, amorphous carbon could be completely transformed into graphite. In the presence of H2, amorphous carbon and graphite were found at roughly the same ratio. No ZrO2 could be detected in the plasma-treated samples, whilst different ZrO2 polymorphs were found in the samples prepared in the tube furnace, depending on the synthesis conditions. Full article
(This article belongs to the Special Issue Plasma Application for Inorganic Synthesis and Analysis)
Show Figures

Graphical abstract

16 pages, 4555 KiB  
Article
Transparent Photocatalytic Thin Films on Flexible Polymer Substrates
by Nives Vodišek, Andraž Šuligoj, Dorota Korte and Urška Lavrenčič Štangar
Materials 2018, 11(10), 1945; https://doi.org/10.3390/ma11101945 - 11 Oct 2018
Cited by 26 | Viewed by 4567
Abstract
Self-cleaning and/or photocatalytic films on polymer substrates have found numerous applications during the past decades. However, the common demand for high-temperature post synthesis treatment limits the application to temperature resistant substrates only. Herein, we prepared self-cleaning photocatalytic films on four thermosensitive polymeric substrates: [...] Read more.
Self-cleaning and/or photocatalytic films on polymer substrates have found numerous applications during the past decades. However, the common demand for high-temperature post synthesis treatment limits the application to temperature resistant substrates only. Herein, we prepared self-cleaning photocatalytic films on four thermosensitive polymeric substrates: polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), and acryl coated polyester (PES) fabric (D2) with poly(vinylidene fluoride) (PVDF) containing lacquer (D1). TiO2 was prepared via a low-temperature sol-gel process using titanium(IV) isopropoxide and zirconium(IV) butoxide as precursors with various loading levels of Zr; 0, 5, 10, and 20 mol.%, and deposited on the substrates by using a SiO2 binder in form of thin films (ca. 200 nm thick) via dip-coating. The films were characterized by SEM, hardness test, UV-Vis, photothermal beam deflection spectroscopy, and IR spectroscopy, while photocatalytic activity was measured by the fluorescence-based method of the terephthalic acid probe and wetting by contact angle measurements. Films containing 10 mol.% of Zr showed the best compromise regarding photocatalytic activity and mechanical stability while from substrates point of view PVC performed the best, followed by PMMA, D1, and D2. The beneficial role of SiO2 binder was not only guaranteeing excellent mechanical stability, but also to prevent the D1 polymer from deterioration; the latter was found to be labile to long-term solar-light exposure due to degradation of the top PVDF layer. Full article
(This article belongs to the Special Issue Self-Cleaning Surfaces)
Show Figures

Figure 1

17 pages, 95 KiB  
Article
Amine and Titanium (IV) Chloride, Boron (III) Chloride or Zirconium (IV) Chloride-Promoted Baylis-Hillman Reactions
by Min Shi, Jian-Kang Jiang and Shi-Cong Cui
Molecules 2001, 6(11), 852-868; https://doi.org/10.3390/61100852 - 31 Oct 2001
Cited by 22 | Viewed by 12289
Abstract
The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV) chloride, boron (III) chloride or zirconium (IV) chloride in the presence of a catalytic amount of selected amines used as a [...] Read more.
The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV) chloride, boron (III) chloride or zirconium (IV) chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC), then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product. Full article
Show Figures

Figure 1

Back to TopTop