Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = zinc lead phosphate glass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4225 KiB  
Article
Synthesis and Characterization of Zinc-Lead-Phosphate Glasses Doped with Europium for Radiation Shielding
by Ahmed M. El-Khayatt, Heba A. Saudi and Norah H. AlRowis
Sustainability 2023, 15(12), 9245; https://doi.org/10.3390/su15129245 - 7 Jun 2023
Cited by 5 | Viewed by 2314
Abstract
Appropriate glass systems can provide efficient transparent radiation shielding. The current study involved the preparation of the glass system with a composition of xEu2O3-(15-x)ZnO-10CaO-35PbO-40P2O5 (where x = 0, 1, 2, 3, and 4 wt.% Eu2 [...] Read more.
Appropriate glass systems can provide efficient transparent radiation shielding. The current study involved the preparation of the glass system with a composition of xEu2O3-(15-x)ZnO-10CaO-35PbO-40P2O5 (where x = 0, 1, 2, 3, and 4 wt.% Eu2O3). The formation of the glass phase was confirmed using X-ray diffraction (XRD). The study analyzed physical and structural parameters, such as optical conductivity (σopt), refractive index (n), and optical band gap (Eg), with the amount of Eu2O3. The findings indicate that the optical band gap increased as the Eu2O3 content increased. Additionally, a decrease in Urbach energy (EU) was observed, suggesting an improvement in the orderliness of the glass. The study also determined various parameters for gamma-ray shielding, including mass attenuation coefficient (μm), effective atomic number (Zeff), and kerma coefficient (k). For neutron shielding characteristics, the macroscopic effective removal cross-section (ΣR) of fast neutrons was calculated. Full article
Show Figures

Figure 1

13 pages, 2477 KiB  
Article
Low-Melting Phosphate Glass Coatings for Structural Parts Composed of Depleted Uranium
by Volodymyr Lobaz, Magdalena Konefał, Nikolay Kotov, Miroslava Lukešová, Jiřina Hromádková, Miroslav Šlouf, Jiří Pánek, Martin Hrubý, Tomáš Chmela and Pavel Krupička
Coatings 2022, 12(10), 1540; https://doi.org/10.3390/coatings12101540 - 13 Oct 2022
Viewed by 3035
Abstract
The applications of depleted uranium in mechanical engineering are limited by its high susceptibility to corrosion. Among various methods of corrosion protection, painting is usually considered a fast and cost-efficient method; however, organic polymer paints are sensitive to ionizing radiation, which is a [...] Read more.
The applications of depleted uranium in mechanical engineering are limited by its high susceptibility to corrosion. Among various methods of corrosion protection, painting is usually considered a fast and cost-efficient method; however, organic polymer paints are sensitive to ionizing radiation, which is a limiting factor, e.g., for the fabrication of shielding containers or structural parts. The solution presented in this work is the creation of a glassy inorganic layer on top of the depleted uranium surface. Zinc lead phosphate low-melting glass was investigated for this purpose. Glass frit was obtained as an amorphous solid, as confirmed by differential scanning calorimetry and X-ray diffraction. The frit was easily ground in liquid media down to sizes suitable for spraying onto the surface of depleted uranium. When the glass powder is sprayed onto the surface of a substrate and fired at 440 °C, a partially crystallized continuous film with a complex morphology is formed, which significantly inhibits corrosion. The coating material shows resistance against high doses of γ-irradiation. Full article
(This article belongs to the Topic Corrosion and Protection of Metallic Materials)
Show Figures

Graphical abstract

14 pages, 5589 KiB  
Article
Investigations on Physico-Mechanical and Spectral Studies of Zn2+ Doped P2O5-Based Bioglass System
by M. Mohan Babu, P. Syam Prasad, S. Hima Bindu, A. Prasad, P. Venkateswara Rao, Nibu Putenpurayil Govindan, N. Veeraiah and Mutlu Özcan
J. Compos. Sci. 2020, 4(3), 129; https://doi.org/10.3390/jcs4030129 - 4 Sep 2020
Cited by 16 | Viewed by 3378
Abstract
ZnO incorporated phosphate based bioglasses with the composition xZnO–22Na2O–24CaO–(54-X)P2O5 (where X = 2, 4, 6, 8, 10 mol%) were developed by melt-quenching process. The physical, thermal and other structural properties of the glasses were studied in detail. By [...] Read more.
ZnO incorporated phosphate based bioglasses with the composition xZnO–22Na2O–24CaO–(54-X)P2O5 (where X = 2, 4, 6, 8, 10 mol%) were developed by melt-quenching process. The physical, thermal and other structural properties of the glasses were studied in detail. By employing various characterization techniques such as X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) in addition to the energy dispersion spectroscopy (EDS), and Raman spectroscopy, the structural properties were analyzed. Interestingly, physical, thermal and mechanical properties were enhanced with the increasing content of zinc oxide up to 8 mol%, due to the presence of more ionic nature of P–O–Zn bonds than P–O–P bonds in the glass network. The FTIR and Raman analysis revealed the evolution of the phosphate network with increasing zinc concentration and leads to progressive depolymerisation of the glass network. The obtained results from the physical and structural properties of these zinc added calcium phosphate glasses support their potential to use as bone implant applications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2020)
Show Figures

Figure 1

Back to TopTop