Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = zeta-associated protein (ZAP70)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4628 KiB  
Article
Step-Wise Assembly of LAT Signaling Clusters Immediately After T Cell Receptor Triggering Contributes to Signal Propagation
by Jieqiong Lou, Elvis Pandžić, Till Böcking, Qiji Deng, Jérémie Rossy and Katharina Gaus
Int. J. Mol. Sci. 2025, 26(9), 4076; https://doi.org/10.3390/ijms26094076 - 25 Apr 2025
Viewed by 483
Abstract
Linker for activation of T cells (LAT) is an essential adaptor protein in early T cell receptor (TCR) signaling that propagates multiple signaling pathways. However, how LAT spatial organization facilitates signal initiation and propagation after TCR triggering is not clear. To differentiate de [...] Read more.
Linker for activation of T cells (LAT) is an essential adaptor protein in early T cell receptor (TCR) signaling that propagates multiple signaling pathways. However, how LAT spatial organization facilitates signal initiation and propagation after TCR triggering is not clear. To differentiate de novo assembly in the plasma membrane from pre-existing LAT vesicles and clusters, we developed imaging protocols and analyses to capture the organization and dynamics of single LAT molecules immediately after TCR engagement. We could observe individual LAT molecules in the plasma membrane that assembled into immobile signaling entities requiring LAT phosphorylation. This step-wise assembly process was temporally highly coordinated via the zeta-chain-associated protein kinase 70 (Zap70)-LAT-growth factor receptor-bound protein 2 (Grb2) pathway. While multiple spatial organization co-existed even within the plasma membrane, our data suggest that de novo plasma membrane assemblies facilitated signal propagation. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 7530 KiB  
Article
The Tyrosine Phosphatase Activity of PTPN22 Is Involved in T Cell Development via the Regulation of TCR Expression
by Bin Bai, Tong Li, Jiahui Zhao, Yanjiao Zhao, Xiaonan Zhang, Tao Wang, Na Zhang, Xipeng Wang, Xinlei Ba, Jialin Xu, Yang Yu and Bing Wang
Int. J. Mol. Sci. 2023, 24(19), 14505; https://doi.org/10.3390/ijms241914505 - 25 Sep 2023
Cited by 6 | Viewed by 2117
Abstract
The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 [...] Read more.
The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 (ZAP70). For the first time, we have successfully produced PTPN22 CS transgenic mice in which the tyrosine phosphatase activity of PTPN22 is suppressed. Notably, the number of thymocytes in the PTPN22 CS mice was significantly reduced, and the expression of cytokines in the spleen and lymph nodes was changed significantly. Furthermore, PTPN22 CS facilitated the positive and negative selection of developing thymocytes, increased the expression of the TCRαβ-CD3 complex on the thymus cell surface, and regulated their internalization and recycling. ZAP70, Lck, Phospholipase C gamma1(PLCγ1), and other proteins were observed to be reduced in PTPN22 CS mouse thymocytes. In summary, PTPN22 regulates TCR internalization and recycling via the modulation of the TCR signaling pathway and affects TCR expression on the T cell surface to regulate negative and positive selection. PTPN22 affected the development of the thymus, spleen, lymph nodes, and other peripheral immune organs in mice. Our study demonstrated that PTPN22 plays a crucial role in T cell development and provides a theoretical basis for immune system construction. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 3179 KiB  
Article
Mitochondrial Respiration Correlates with Prognostic Markers in Chronic Lymphocytic Leukemia and Is Normalized by Ibrutinib Treatment
by Subir Roy Chowdhury, Eric D. J. Bouchard, Ryan Saleh, Zoann Nugent, Cheryl Peltier, Edgard Mejia, Sen Hou, Carly McFall, Mandy Squires, Donna Hewitt, Linda Davidson, Garry X. Shen, James B. Johnston, Christine Doucette, Grant M. Hatch, Paul Fernyhough, Aaron Marshall, Spencer B. Gibson, David E. Dawe and Versha Banerji
Cancers 2020, 12(3), 650; https://doi.org/10.3390/cancers12030650 - 11 Mar 2020
Cited by 19 | Viewed by 5188
Abstract
Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to [...] Read more.
Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to evaluate mitochondrial function. We found significant increases in mitochondrial respiration rates in CLL versus control B lymphocytes. We also observed amongst CLL patients that advanced age, female sex, zeta-chain-associated protein of 70 kD (ZAP-70+), cluster of differentiation 38 (CD38+), and elevated β2-microglobulin (β2-M) predicted increased maximal respiration rates. ZAP-70+ CLL cells exhibited significantly higher bioenergetics than B lymphocytes or ZAP-70 CLL cells and were more sensitive to the uncoupler, carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone (FCCP). Univariable and multivariable linear regression analysis demonstrated that ZAP-70+ predicted increased maximal respiration. ZAP-70+ is a surrogate for B cell receptor (BCR) activation and can be targeted by ibrutinib, which is a clinically approved Bruton’s tyrosine kinase (BTK) inhibitor. Therefore, we evaluated the oxygen consumption rates (OCR) of CLL cells and plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4) levels from ibrutinib-treated patients and demonstrated decreased OCR similar to control B lymphocytes, suggesting that ibrutinib treatment resets the mitochondrial bioenergetics, while diminished CCL3/CCL4 levels indicate the down regulation of the BCR signaling pathway in CLL. Our data support evaluation of mitochondrial respiration as a preclinical tool for the response assessment of CLL cells. Full article
(This article belongs to the Special Issue Chronic Lymphocytic Leukemia)
Show Figures

Figure 1

4 pages, 682 KiB  
Article
High Lymphoid Enhancer-Binding Factor-1 Expression Is Associated with Disease Progression and Poor Prognosis in Chronic Lymphocytic Leukemia
by Felix Erdfelder, Magdalena Hertweck, Alexandra Filipovich, Sabrina Uhrmacher and Karl-Anton Kreuzer
Hematol. Rep. 2010, 2(1), e3; https://doi.org/10.4081/hr.2010.e3 - 6 May 2010
Cited by 43
Abstract
We determined lymphoid enhancer-binding factor-1 (LEF1) mRNA expression in 112 chronic lymphocytic leukemia (CLL) samples and assessed correlations with the prognostic markers ZAP70 and CD38, Binet stages, the percentage of lymphocytes in the peripheral blood, and fibromodulin (FMOD) transcripts. The mean LEF1 relative [...] Read more.
We determined lymphoid enhancer-binding factor-1 (LEF1) mRNA expression in 112 chronic lymphocytic leukemia (CLL) samples and assessed correlations with the prognostic markers ZAP70 and CD38, Binet stages, the percentage of lymphocytes in the peripheral blood, and fibromodulin (FMOD) transcripts. The mean LEF1 relative expression ratios (RER) were 53.72 and 37.10 in ZAP70-positive and ZAP70-negative patients, respectively (p = 0.004). However, we did not observe a significant difference in LEF1 expression between CD38-positive and CD38-negative patients. Moreover, patients requiring treatment showed a mean LEF1 RER of 85.61 whereas patients in recently diagnosed Binet A stage had a mean of only 22.01 (p < 0.001). We also found significant correl­ations of LEF1 with the percentage of lymphocytes and FMOD expression. Our results suggest that high LEF1 expression is associated with poor prognosis and disease progression. Thus, LEF1 might be involved in the process of disease progression and possibly can serve as a molecular parameter for risk assessment and/or monitoring of CLL. Full article
Back to TopTop