Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = z-pinch device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 4052 KiB  
Article
Evaluation of a New Kind of Z-Pinch-Based Space Propulsion Engine: Theoretical Foundations and Design of a Proof-of-Concept Experiment
by S. K. H. Auluck, R. Verma and R. S. Rawat
Plasma 2024, 7(4), 939-977; https://doi.org/10.3390/plasma7040052 - 19 Dec 2024
Viewed by 1772
Abstract
This paper explores a recently proposed scalable z-pinch-based space propulsion engine in greater detail. This concept involves a “modified plasma focus with a tapered anode that transports current from a pulsed power source to a consumable portion of the anode in the form [...] Read more.
This paper explores a recently proposed scalable z-pinch-based space propulsion engine in greater detail. This concept involves a “modified plasma focus with a tapered anode that transports current from a pulsed power source to a consumable portion of the anode in the form of a hypodermic needle tube continuously extruded along the axis of the device”. This tube is filled with a gas at a high pressure and also optionally with an axial magnetic field. The current enters the metal tube through its contact with the anode and returns to the cathode via the plasma sliding over its outer wall. The resulting rapid electrical explosion of the metal tube partially transfers current to a snowplough shock in the fill gas. Both the metal plasma and the fill gas form axisymmetric converging shells. Their interaction forms a hot and dense plasma of the fill gas surrounded by the metal plasma. Its ejection along the axis provides the impulse needed for propulsion. In a nonnuclear version, the fill gas could be xenon or hydrogen. Its unique energy density scaling could potentially lead to a neutron-deficient nuclear fusion drive based on the proton-boron avalanche fusion reaction by lining the tube with solid decaborane. In order to explore the inherent potential of this idea as a scalable space propulsion engine, this paper discusses its theoretical foundations and outlines the first iteration of a conceptual engineering design study for a proof-of-concept experiment based on the UNU-ICTP Plasma Focus facility at the Nanyang Technological University, Singapore. Full article
Show Figures

Figure 1

10 pages, 2270 KiB  
Article
Study of the Pure Deuterium Fuel Burning Rate in Z-Pinch Devices with Magneto-Inertial Confinement
by Olzhas Bayakhmetov and Assylkhan Azamatov
Energies 2024, 17(21), 5297; https://doi.org/10.3390/en17215297 - 24 Oct 2024
Viewed by 955
Abstract
The burning rate of pure deuterium (D-D) fuel in Z-pinch devices with magneto-inertial confinement was studied in this paper. The system of particle and energy balance equations for D-D fuel burning with a mixed D-T-3He fusion cycle (D-D, D-T, and D- [...] Read more.
The burning rate of pure deuterium (D-D) fuel in Z-pinch devices with magneto-inertial confinement was studied in this paper. The system of particle and energy balance equations for D-D fuel burning with a mixed D-T-3He fusion cycle (D-D, D-T, and D-3He reactions) was solved numerically, taking into account the densities of all reacted and produced ions (protons, deuterium, tritium, helium-3, and alpha-particles). The obtained results indicate that effective D-D fusion in Z-pinch devices can be successfully achieved under conditions of a hot, dense plasma with an initial temperature of 31 keV or higher. The initial ion density of deuterium and electron density were equal due to quasi-neutrality condition of the plasma, with both reaching 1024 m−3. Although the obtained results show that the burning rate of D-D fuel is approximately 2.3 times slower and its power density notably lower than that of D-T fuel, pure deuterium plasma can be considered as a promising alternative to well-studied deuterium–tritium plasma, with potential future applications in magneto-inertial fusion (MIF) facilities. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

18 pages, 4621 KiB  
Article
Development of a Miniaturized 2-Joule Pulsed Plasma Source Based on Plasma Focus Technology: Applications in Extreme Condition Materials and Nanosatellite Orientation
by Leopoldo Soto, Cristian Pavez, José Pedreros, Jalaj Jain, José Moreno, Patricio San Martín, Fermín Castillo, Daniel Zanelli and Luis Altamirano
Micromachines 2024, 15(9), 1123; https://doi.org/10.3390/mi15091123 - 1 Sep 2024
Viewed by 2300
Abstract
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, [...] Read more.
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, jets, X-rays, neutron pulses, ions, and electron beams. In recent years, considerable efforts have been directed toward miniaturizing plasma focus devices, driven by the pursuit of both basic studies and technological advancements. In this paper, we present the design and construction of a compact, portable pulsed plasma source based on plasma focus technology, operating at the ~2–4 Joule energy range for versatile applications (PF-2J: 120 nF capacitance, 6–9 kV charging voltage, 40 nH inductance, 2.16–4.86 J stored energy, and 10–15 kA maximum current at short circuit). The components of the device, including capacitors, spark gaps, discharge chambers, and power supplies, are transportable within hand luggage. The electrical characteristics of the discharge were thoroughly characterized using voltage and current derivative monitoring techniques. A peak current of 15 kiloamperes was achieved within 110 nanoseconds in a short-circuit configuration at a 9 kV charging voltage. Plasma dynamics were captured through optical refractive diagnostics employing a pulsed Nd-YAG laser with a 170-picosecond pulse duration. Clear evidence of the z-pinch effect was observed during discharges in a deuterium atmosphere at 4 millibars and 6 kilovolts. The measured pinch length and radius were approximately 0.8 mm and less than 100 μm, respectively. Additionally, we explore the potential applications of this compact pulsed plasma source. These include its use as a plasma shock irradiation device for analyzing materials intended for the first wall of nuclear fusion reactors, its capability in material film deposition, and its utility as an educational tool in experimental plasma physics. We also show its potential as a pulsed plasma thruster for nanosatellites, showcasing the advantages of miniaturized plasma focus technology. Full article
(This article belongs to the Special Issue Microreactors and Their Applications)
Show Figures

Figure 1

17 pages, 7653 KiB  
Article
Surface Analysis of Stainless Steel Electrodes Cleaned by Atmospheric Pressure Plasma
by Jia Zhang, Mengjia Dang, Cheng Luo, Yongshan Ba and Qingkai Li
Materials 2024, 17(14), 3621; https://doi.org/10.3390/ma17143621 - 22 Jul 2024
Viewed by 1465
Abstract
The Z-pinch device is a critical component in inertial confinement fusion, where stainless steel electrodes must withstand high current densities of up to MA/cm2. Gases and difficult-to-remove impurities adhering to the electrode surfaces can ionize, significantly impacting the device’s electrical conductivity [...] Read more.
The Z-pinch device is a critical component in inertial confinement fusion, where stainless steel electrodes must withstand high current densities of up to MA/cm2. Gases and difficult-to-remove impurities adhering to the electrode surfaces can ionize, significantly impacting the device’s electrical conductivity efficiency. In this paper, the surface of stainless steel electrodes was subjected to cleaning using a large-area plasma jet under atmospheric pressure. The wettability, chemical composition, and chemical state of the electrode surface were characterized using a water contact angle measuring instrument and X-ray photoelectron spectroscopy (XPS). The cleaning effect under different discharge parameters was systematically analyzed. The results revealed a significant reduction in the content of carbon pollutants on the surface of stainless steel electrodes, decreasing from 62.95% to a minimum of 37.68% after plasma cleaning. Moreover, the water contact angle decreased from 70.76° to a minimum of 29.31°, and the content of water molecules adsorbed on the surface decreased from 17.31% to a minimum of 5.9%. Based on the evolution process of micro-element content and chemical state on the surface of stainless steel electrode, the cleaning process of adhering substances on the surface by atmospheric pressure plasma was analyzed by the layered cleaning model for surface pollutants on stainless steel. Full article
Show Figures

Figure 1

11 pages, 1528 KiB  
Article
Theoretical Study of the D-T Fuel Burning Rate in Z-Pinch Facilities with Magneto-Inertial Confinement
by Olzhas Bayakhmetov and Assylkhan Azamatov
Energies 2024, 17(13), 3069; https://doi.org/10.3390/en17133069 - 21 Jun 2024
Cited by 1 | Viewed by 1200
Abstract
This paper focuses on the theoretical study of the burning rate of D-T fuel in Z-pinch devices with magneto-inertial confinement. The investigated nuclear fusion process involved fast laser ignition of a mixed D-T fuel contained in a capsule at a temperature of 10 [...] Read more.
This paper focuses on the theoretical study of the burning rate of D-T fuel in Z-pinch devices with magneto-inertial confinement. The investigated nuclear fusion process involved fast laser ignition of a mixed D-T fuel contained in a capsule at a temperature of 10 keV, influenced by a strong electromagnetic field. The D-T, D-D, D-3He, 3He-3He, and T-T fusion reactions were employed in the calculations. Based on modern experimental fit data of nuclear fusion reaction rates, the particle and energy balance equations, along with their numerical solutions, were considered, utilizing the ion densities of charged particles such as protons, deuterium, tritium, 3He, and 4He ions. The plasma was in a hot, ultra-dense state, under the quasi-neutrality condition, with initial deuterium and tritium densities of 5×1023 cm−3 and an electron density of 10×1023 cm−3. The ion and electron temperatures were considered equal in this paper. The time dependencies of the ion densities, plasma temperature, energy yield from charged ions and neutrons, fusion power density, and bremsstrahlung radiation loss were investigated. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

8 pages, 5282 KiB  
Article
Table-Top Water-Window Microscope Using a Capillary Discharge Plasma Source with Spatial Resolution 75 nm
by Tomáš Parkman, Michal Nevrkla, Alexandr Jančárek, Jana Turňová, Dalibor Pánek and Miroslava Vrbová
Appl. Sci. 2020, 10(18), 6373; https://doi.org/10.3390/app10186373 - 13 Sep 2020
Cited by 6 | Viewed by 2783
Abstract
We present a design of a compact transmission water-window microscope based on the Z-pinching capillary discharge nitrogen plasma source. The microscope operates at wavelength of 2.88 nm (430 eV), and with its table-top dimensions provides an alternative to large-scale soft X-ray (SXR) microscope [...] Read more.
We present a design of a compact transmission water-window microscope based on the Z-pinching capillary discharge nitrogen plasma source. The microscope operates at wavelength of 2.88 nm (430 eV), and with its table-top dimensions provides an alternative to large-scale soft X-ray (SXR) microscope systems based on synchrotrons and free-electron lasers. The emitted soft X-ray radiation is filtered by a titanium foil and focused by an ellipsoidal condenser mirror into the sample plane. A Fresnel zone plate was used to create a transmission image of the sample onto a charge-coupled device (CCD) camera. To assess the resolution of the microscope, we imaged a standard sample-copper mesh. The spatial resolution of the microscope is 75 nm at half-pitch, calculated via a 10–90% intensity knife-edge test. The applicability of the microscope is demonstrated by the imaging of green algae-Desmodesmus communis. This paper describes the principle of capillary discharge source, design of the microscope, and experimental imaging results of Cu mesh and biological sample. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

Back to TopTop