Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = woody plant encroachment (WPE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2791 KiB  
Article
Combining Open-Source Machine Learning and Publicly Available Aerial Data (NAIP and NEON) to Achieve High-Resolution High-Accuracy Remote Sensing of Grass–Shrub–Tree Mosaics
by Brynn Noble and Zak Ratajczak
Remote Sens. 2025, 17(13), 2224; https://doi.org/10.3390/rs17132224 - 28 Jun 2025
Viewed by 627
Abstract
Woody plant encroachment (WPE) is transforming grasslands globally, yet accurately mapping this process remains challenging. State-funded, publicly available high-resolution aerial imagery offers a potential solution, including the USDA’s National Agriculture Imagery Program (NAIP) and NSF’s National Ecological Observatory Network (NEON) Aerial Observation Platform [...] Read more.
Woody plant encroachment (WPE) is transforming grasslands globally, yet accurately mapping this process remains challenging. State-funded, publicly available high-resolution aerial imagery offers a potential solution, including the USDA’s National Agriculture Imagery Program (NAIP) and NSF’s National Ecological Observatory Network (NEON) Aerial Observation Platform (AOP). We evaluated the accuracy of land cover classification using NAIP, NEON, and both sources combined. We compared two machine learning models—support vector machines and random forests—implemented in R using large training and evaluation data sets. Our study site, Konza Prairie Biological Station, is a long-term experiment in which variable fire and grazing have created mosaics of herbaceous plants, shrubs, deciduous trees, and evergreen trees (Juniperus virginiana). All models achieved high overall accuracy (>90%), with NEON slightly outperforming NAIP. NAIP underperformed in detecting evergreen trees (52–78% vs. 83–86% accuracy with NEON). NEON models relied on LiDAR-based canopy height data, whereas NAIP relied on multispectral bands. Combining data from both platforms yielded the best results, with 97.7% overall accuracy. Vegetation indices contributed little to model accuracy, including NDVI (normalized digital vegetation index) and EVI (enhanced vegetation index). Both machine learning methods achieved similar accuracy. Our results demonstrate that free, high-resolution imagery and open-source tools can enable accurate, high-resolution, landscape-scale WPE monitoring. Broader adoption of such approaches could substantially improve the monitoring and management of grassland biodiversity, ecosystem function, ecosystem services, and environmental resilience. Full article
Show Figures

Figure 1

24 pages, 14795 KiB  
Article
Detecting Woody Plants in Southern Arizona Using Data from the National Ecological Observatory Network (NEON)
by Thomas Hutsler, Narcisa G. Pricope, Peng Gao and Monica T. Rother
Remote Sens. 2023, 15(1), 98; https://doi.org/10.3390/rs15010098 - 24 Dec 2022
Cited by 3 | Viewed by 2544
Abstract
Land cover changes and conversions are occurring rapidly in response to human activities throughout the world. Woody plant encroachment (WPE) is a type of land cover conversion that involves the proliferation and/or densification of woody plants in an ecosystem. WPE is especially prevalent [...] Read more.
Land cover changes and conversions are occurring rapidly in response to human activities throughout the world. Woody plant encroachment (WPE) is a type of land cover conversion that involves the proliferation and/or densification of woody plants in an ecosystem. WPE is especially prevalent in drylands, where subtle changes in precipitation and disturbance regimes can have dramatic effects on vegetation structure and degrade ecosystem functions and services. Accurately determining the distribution of woody plants in drylands is critical for protecting human and natural resources through woody plant management strategies. Using an object-based approach, we have used novel open-source remote sensing and in situ data from Santa Rita Experimental Range (SRER), National Ecological Observatory Network (NEON), Arizona, USA with machine learning algorithms and tested each model’s efficacy for estimating fractional woody cover (FWC) to quantify woody plant extent. Model performance was compared using standard model assessment metrics such as accuracy, sensitivity, specificity, and runtime to assess model variables and hyperparameters. We found that decision tree-based models with a binary classification scheme performed best, with sequential models (Boosting) slightly outperforming independent models (Random Forest) for both object classification and FWC estimates. Mean canopy height and mean, median, and maximum statistics for all vegetation indices were found to have highest variable importance. Optimal model hyperparameters and potential limitations of the NEON dataset for classifying woody plants in dryland regions were also identified. Overall, this study lays the groundwork for developing machine learning models for dryland woody plant management using solely NEON data. Full article
Show Figures

Figure 1

16 pages, 5634 KiB  
Technical Note
Seasonal Spectral Separation of Western Snowberry and Wolfwillow in Grasslands with Field Spectroradiometer and Simulated Multispectral Bands
by Irini Soubry and Xulin Guo
Environments 2021, 8(7), 60; https://doi.org/10.3390/environments8070060 - 22 Jun 2021
Viewed by 3366
Abstract
Woody plant encroachment (WPE), the expansion of native and non-native trees and shrubs into grasslands, has led to degradation worldwide. In the Canadian prairies, western snowberry and wolfwillow shrubs are common encroachers, whose cover is currently unknown. As the use of remote sensing [...] Read more.
Woody plant encroachment (WPE), the expansion of native and non-native trees and shrubs into grasslands, has led to degradation worldwide. In the Canadian prairies, western snowberry and wolfwillow shrubs are common encroachers, whose cover is currently unknown. As the use of remote sensing in grassland monitoring increases, opportunities to detect and map these woody species are enhanced. Therefore, the purpose of this study is to identify the optimal season for detection of the two shrubs, to determine the sensitive wavelengths and bands that allow for their separation, and to investigate differences in separability potential between a hyperspectral and broadband multispectral approach. We do this by using spring, summer, and fall field-based spectra of both shrubs for the calculation of spectral separability metrics and for the simulation of broadband spectra. Our results show that the summer offers higher discrimination between the two species, especially when using the red and blue spectral regions and to a lesser extent the green region. The fall season fails to provide significant spectral separation along the wavelength spectrum. Moreover, there is no significant difference in the results from the hyperspectral or broadband approach. Nevertheless, cross-validation with satellite imagery is needed to confirm the current results. Full article
(This article belongs to the Special Issue Geospatial Technology for Land Restoration and Planning)
Show Figures

Figure 1

26 pages, 3579 KiB  
Article
Identification of the Optimal Season and Spectral Regions for Shrub Cover Estimation in Grasslands
by Irini Soubry and Xulin Guo
Sensors 2021, 21(9), 3098; https://doi.org/10.3390/s21093098 - 29 Apr 2021
Cited by 15 | Viewed by 3476
Abstract
Woody plant encroachment (WPE), the expansion of native and non-native trees and shrubs into grasslands, is a less studied factor that leads to declines in grassland ecosystem health. With the increasing application of remote sensing in grassland monitoring and measuring, it is still [...] Read more.
Woody plant encroachment (WPE), the expansion of native and non-native trees and shrubs into grasslands, is a less studied factor that leads to declines in grassland ecosystem health. With the increasing application of remote sensing in grassland monitoring and measuring, it is still difficult to detect WPE at its early stages when its spectral signals are not strong enough. Even at late stages, woody species have strong vegetation characteristics that are commonly categorized as healthy ecosystems. We focus on how shrub encroachment can be detected through remote sensing by looking at the biophysical and spectral properties of the WPE grassland ecosystem, investigating the appropriate season and wavelengths that identify shrub cover, testing the spectral separability of different shrub cover groups and by revealing the lowest shrub cover that can be detected by remote sensing. Biophysical results indicate spring as the best season to distinguish shrubs in our study area. The earliest shrub encroachment can be identified most likely only when the cover reaches between 10% and 25%. A correlation between wavelength spectra and shrub cover indicated four regions that are statistically significant, which differ by season. Furthermore, spectral separability of shrubs increases with their cover; however, good separation is only possible for pure shrub pixels. From the five separability metrics used, Transformed divergence and Jeffries-Matusita distance have better interpretations. The spectral regions for pure shrub pixel separation are slightly different from those derived by correlation and can be explained by the influences from land cover mixtures along our study transect. Full article
(This article belongs to the Special Issue Remote Sensing Application for Monitoring Grassland)
Show Figures

Figure 1

Back to TopTop