Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = wooden solar evaporator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4849 KiB  
Article
Performance Analysis of Floating Structures in Solar-Powered Desalination
by Ajay Kumar Kaviti, Siva Ram Akkala, Michael Pohořelý and Vineet Singh Sikarwar
Energies 2024, 17(3), 621; https://doi.org/10.3390/en17030621 - 27 Jan 2024
Cited by 6 | Viewed by 1858
Abstract
Solar desalination employs direct sunrays in order to evaporate water vapor and collect the condensed water, making it an effective solution to combat water scarcity. In this experimental study, a solar still with a floating absorber is placed on the water, which acts [...] Read more.
Solar desalination employs direct sunrays in order to evaporate water vapor and collect the condensed water, making it an effective solution to combat water scarcity. In this experimental study, a solar still with a floating absorber is placed on the water, which acts as a heat absorber and is used to stop the heat conducting to the condensed water present in the still. Stainless steel, with thickness of 0.05 mm and dimensions of 500 mm × 500 mm, is used; this is coated with a Cr-Mn-Fe oxide nanocoating, and a wooden frame is attached to the sheet in order to maintain the balance, allowing the still to float at a constant depth on the water. The experiment is conducted on three different levels of water (3 cm, 4 cm, and 5 cm) using a conventional solar still (CSS) and a modified solar still (MSS) under the same climatic circumstances. The total distillate for depths of 3 cm, 4 cm, and 5 cm are 390 mL, 385 mL, and 385 mL, respectively for the MSS; the depths were 250 mL, 220 mL, and 205 mL, respectively, for the CSS. Upon comparison, the MSS performed better than the CSS by 56% at the 3 cm depth of water, 75% at the 4 cm depth of water, and 87% at the 5 cm depth of water. It was deduced that desalinated water for the MSS was 15.6% more cost-effective than for the CSS, and it was also 81% more cost-effective than packaged drinking water in India. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

11 pages, 2948 KiB  
Article
Wooden Solar Evaporator Design Based on the Water Transpiration Principle of Trees
by Wei Xiong and Dagang Li
Materials 2023, 16(4), 1628; https://doi.org/10.3390/ma16041628 - 15 Feb 2023
Viewed by 1856
Abstract
The double-sided carbonization of poplar with different sections forms a three-layer structure inspired by tree water transpiration. A photothermal evaporation comparison experiment was conducted to simulate the influence of solar radiation intensity (1 kW·m−2) on uncarbonized and single- and double-sided carbonized [...] Read more.
The double-sided carbonization of poplar with different sections forms a three-layer structure inspired by tree water transpiration. A photothermal evaporation comparison experiment was conducted to simulate the influence of solar radiation intensity (1 kW·m−2) on uncarbonized and single- and double-sided carbonized poplar specimens. The tissue structure, chemical functional group changes, and profile density of the specimens were analyzed using scanning electron microscopy, Fourier transform infrared spectrometry, and X-ray profile density testing, respectively. The results showed that the tissue structure of the specimen changed after treatment, and the relationship of water evaporation was shown as follows: cross-section (C) > Radial section (R) > Tangential section (T), and Double-sided carbonized poplar (DCP) > Single-sided carbonized poplar (SCP) > Non-carbonized poplar (NCP). Of these, the maximum photothermal evaporation was from the cross-section of the double-sided carbonized poplar (NCPC) with a value of 1.32 kg·m−2·h−1, which was 21.97% higher than single-sided carbonized poplar (SCPC) and 37.88% higher than non-carbonized poplar (NCPC). Based on the results, double-sided carbonization three-layer structure treatment can improve the evaporation force of the poplar interface, thereby improving the moisture migration ability of wood, and can be applied to solar interface absorber materials. Full article
Show Figures

Figure 1

Back to TopTop