Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = wheel-crawler integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16108 KB  
Article
Development of roCaGo for Forest Observation and Forestry Support
by Yoshinori Kiga, Yuzuki Sugasawa, Takumi Sakai, Takuma Nemoto and Masami Iwase
Forests 2025, 16(7), 1067; https://doi.org/10.3390/f16071067 - 26 Jun 2025
Viewed by 446
Abstract
This study addresses the ’last-mile’ transportation challenges that arise in steep and narrow forest terrain by proposing a novel robotic palanquin system called roCaGo. It is inspired by the mechanical principles of two-wheel-steering and two-wheel-drive (2WS/2WD) bicycles. The roCaGo system integrates front- and [...] Read more.
This study addresses the ’last-mile’ transportation challenges that arise in steep and narrow forest terrain by proposing a novel robotic palanquin system called roCaGo. It is inspired by the mechanical principles of two-wheel-steering and two-wheel-drive (2WS/2WD) bicycles. The roCaGo system integrates front- and rear-wheel-drive mechanisms, as well as a central suspension structure for carrying loads. Unlike conventional forestry machinery, which requires wide, well-maintained roads or permanent rail systems, the roCaGo system enables flexible, operator-assisted transport along narrow, unprepared mountain paths. A dynamic model of the system was developed to design a stabilization control strategy, enabling roCaGo to maintain transport stability and assist the operator during navigation. Numerical simulations and preliminary physical experiments demonstrate its effectiveness in challenging forest environments. Furthermore, the applicability of roCaGo has been extended to include use as a mobile third-person viewpoint platform to support the remote operation of existing forestry equipment; specifically the LV800crawler vehicle equipped with a front-mounted mulcher. Field tests involving LiDAR sensors mounted on roCaGo were conducted to verify its ability to capture the environmental data necessary for non-line-of-sight teleoperation. The results show that roCaGo is a promising solution for improving labor efficiency and ensuring operator safety in forest logistics and remote-controlled forestry operations. Full article
Show Figures

Figure 1

22 pages, 30822 KB  
Article
Simulation Research on the Grouser Effect of a Reconfigurable Wheel-Crawler Integrated Walking Mechanism Based on the Surface Response Method
by Pengfei Zhou, Shufeng Tang and Zaiyong Sun
Appl. Sci. 2023, 13(7), 4202; https://doi.org/10.3390/app13074202 - 26 Mar 2023
Cited by 3 | Viewed by 2511
Abstract
To improve the unstructured terrain traversing performance of the scientific research robot of the Qinghai–Tibet Plateau station, the parameters of the track shoe of the reconfigurable wheel-crawler walking mechanism were studied. Based on a typical track shoe puncture effect model, the experimental design [...] Read more.
To improve the unstructured terrain traversing performance of the scientific research robot of the Qinghai–Tibet Plateau station, the parameters of the track shoe of the reconfigurable wheel-crawler walking mechanism were studied. Based on a typical track shoe puncture effect model, the experimental design was carried out based on the surface response method, and the dynamic model of the triangular crawler mode of the reconfigurable wheel-crawler walking mechanism was constructed and tested using RecurDyn V9R3 software. Through an analysis of the simulation results, the interaction of the grouser parameters was further clarified, and the regression equation of the traction force of the walking mechanism was obtained. The grouser parameters that enabled the reconfigurable wheel-crawler walking mechanism to have the maximum traction were obtained; these will be used to guide the machining of the prototype walking mechanism. Full article
(This article belongs to the Topic Industrial Robotics: 2nd Volume)
Show Figures

Figure 1

Back to TopTop