Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = wet porous fin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3537 KiB  
Article
A Thermal Analysis of a Convective–Radiative Porous Annular Fin Wetted in a Ternary Nanofluid Exposed to Heat Generation under the Influence of a Magnetic Field
by Arushi Sharma, B. N. Hanumagowda, Pudhari Srilatha, P. V. Ananth Subray, S. V. K. Varma, Jasgurpreet Singh Chohan, Shalan Alkarni and Nehad Ali Shah
Energies 2023, 16(17), 6155; https://doi.org/10.3390/en16176155 - 24 Aug 2023
Cited by 6 | Viewed by 1433
Abstract
Fins are utilized to considerably increase the surface area available for heat emission between a heat source and the surrounding fluid. In this study, radial annular fins are considered to investigate the rate of heat emission from the surface to the surroundings. The [...] Read more.
Fins are utilized to considerably increase the surface area available for heat emission between a heat source and the surrounding fluid. In this study, radial annular fins are considered to investigate the rate of heat emission from the surface to the surroundings. The effects of a ternary nanofluid, magnetic field, permeable medium and thermal radiation are considered to formulate the nonlinear ordinary differential equation. The differential transformation method, one of the most efficient approaches, has been used to arrive at the analytical answer. Graphical analysis has been performed to show how nondimensional characteristics dominate the thermal gradient of the fin. The thickness and inner radius of a fin are crucial factors that impact the heat transmission rate. Based on the analysis, it can be concluded that a cost-effective annular rectangular fin can be achieved by maintaining a thickness of 0.1 cm and an inner radius of 0.2 cm. Full article
(This article belongs to the Special Issue Fluid Flow and Heat Transfer Analysis in Industrial Applications)
Show Figures

Figure 1

23 pages, 839 KiB  
Article
On the Computational Study of a Fully Wetted Longitudinal Porous Heat Exchanger Using a Machine Learning Approach
by Hosam Alhakami, Naveed Ahmad Khan, Muhammad Sulaiman, Wajdi Alhakami and Abdullah Baz
Entropy 2022, 24(9), 1280; https://doi.org/10.3390/e24091280 - 11 Sep 2022
Cited by 9 | Viewed by 2885
Abstract
The present study concerns the modeling of the thermal behavior of a porous longitudinal fin under fully wetted conditions with linear, quadratic, and exponential thermal conductivities surrounded by environments that are convective, conductive, and radiative. Porous fins are widely used in various engineering [...] Read more.
The present study concerns the modeling of the thermal behavior of a porous longitudinal fin under fully wetted conditions with linear, quadratic, and exponential thermal conductivities surrounded by environments that are convective, conductive, and radiative. Porous fins are widely used in various engineering and everyday life applications. The Darcy model was used to formulate the governing non-linear singular differential equation for the heat transfer phenomenon in the fin. The universal approximation power of multilayer perceptron artificial neural networks (ANN) was applied to establish a model of approximate solutions for the singular non-linear boundary value problem. The optimization strategy of a sports-inspired meta-heuristic paradigm, the Tiki-Taka algorithm (TTA) with sequential quadratic programming (SQP), was utilized to determine the thermal performance and the effective use of fins for diverse values of physical parameters, such as parameter for the moist porous medium, dimensionless ambient temperature, radiation coefficient, power index, in-homogeneity index, convection coefficient, and dimensionless temperature. The results of the designed ANN-TTA-SQP algorithm were validated by comparison with state-of-the-art techniques, including the whale optimization algorithm (WOA), cuckoo search algorithm (CSA), grey wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, and machine learning algorithms. The percentage of absolute errors and the mean square error in the solutions of the proposed technique were found to lie between 104 to 105 and 108 to 1010, respectively. A comprehensive study of graphs, statistics of the solutions, and errors demonstrated that the proposed scheme’s results were accurate, stable, and reliable. It was concluded that the pace at which heat is transferred from the surface of the fin to the surrounding environment increases in proportion to the degree to which the wet porosity parameter is increased. At the same time, inverse behavior was observed for increase in the power index. The results obtained may support the structural design of thermally effective cooling methods for various electronic consumer devices. Full article
(This article belongs to the Topic Heat Exchanger Design and Heat Pump Efficiency)
Show Figures

Figure 1

Back to TopTop