Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = waxy maize biofortification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5337 KiB  
Article
Enhancement of Nutritional Substance, Trace Elements, and Pigments in Waxy Maize Grains through Foliar Application of Selenite
by Boyu Lu, Haoyuan An, Xinli Song, Bosen Yang, Zhuqing Jian, Fuzhu Cui, Jianfu Xue, Zhiqiang Gao and Tianqing Du
Foods 2024, 13(9), 1337; https://doi.org/10.3390/foods13091337 - 26 Apr 2024
Cited by 6 | Viewed by 1901
Abstract
Selenium (Se) is a micronutrient known for its essential role in human health and plant metabolism. Waxy maize (Zea mays L. sinensis kulesh)—known for its high nutritional quality and distinctive flavor—holds significant consumer appeal. Therefore, this study aims to assess the [...] Read more.
Selenium (Se) is a micronutrient known for its essential role in human health and plant metabolism. Waxy maize (Zea mays L. sinensis kulesh)—known for its high nutritional quality and distinctive flavor—holds significant consumer appeal. Therefore, this study aims to assess the effects of foliar Se spraying on the nutritional quality of waxy maize grains, with a focus on identifying varietal differences and determining optimal Se dosage levels for maximizing nutritional benefits. We employed a two-factor split-plot design to assess the nutritional quality, trace elements, and pigment content of jinnuo20 (J20) and caitiannuo1965 (C1965) at the milk stage after being subjected to varying Se doses sprayed on five leaves. Our findings indicate superior nutrient content in J20 compared to C1965, with both varieties exhibiting optimal quality under Se3 treatment, falling within the safe range of Se-enriched agricultural products. JS3 (0.793) demonstrated the highest overall quality, followed by JS2 (0.606), JS4 (0.411), and JS1 (0.265), while CS0 had the lowest (−0.894). These results underscore the potential of foliar biofortification to enhance the functional component contents of waxy maize grains. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

Back to TopTop