Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = walnut twig beetle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4311 KiB  
Article
Rapid Detection of Pityophthorus juglandis (Blackman) (Coleoptera, Curculionidae) with the Loop-Mediated Isothermal Amplification (LAMP) Method
by Domenico Rizzo, Salvatore Moricca, Matteo Bracalini, Alessandra Benigno, Umberto Bernardo, Nicola Luchi, Daniele Da Lio, Francesco Nugnes, Giovanni Cappellini, Chiara Salemi, Santa Olga Cacciola and Tiziana Panzavolta
Plants 2021, 10(6), 1048; https://doi.org/10.3390/plants10061048 - 22 May 2021
Cited by 14 | Viewed by 4080
Abstract
The walnut twig beetle Pityophthorus juglandis is a phloem-boring bark beetle responsible, in association with the ascomycete Geosmithia morbida, for the Thousand Cankers Disease (TCD) of walnut trees. The recent finding of TCD in Europe prompted the development of effective diagnostic protocols [...] Read more.
The walnut twig beetle Pityophthorus juglandis is a phloem-boring bark beetle responsible, in association with the ascomycete Geosmithia morbida, for the Thousand Cankers Disease (TCD) of walnut trees. The recent finding of TCD in Europe prompted the development of effective diagnostic protocols for the early detection of members of this insect/fungus complex. Here we report the development of a highly efficient, low-cost, and rapid method for detecting the beetle, or even just its biological traces, from environmental samples: the loop-mediated isothermal amplification (LAMP) assay. The method, designed on the 28S ribosomal RNA gene, showed high specificity and sensitivity, with no cross reactivity to other bark beetles and wood-boring insects. The test was successful even with very small amounts of the target insect’s nucleic acid, with limit values of 0.64 pg/µL and 3.2 pg/µL for WTB adults and frass, respectively. A comparison of the method (both in real time and visual) with conventional PCR did not display significant differences in terms of LoD. This LAMP protocol will enable quick, low-cost, and early detection of P. juglandis in areas with new infestations and for phytosanitary inspections at vulnerable sites (e.g., seaports, airports, loading stations, storage facilities, and wood processing companies). Full article
Show Figures

Figure 1

13 pages, 1187 KiB  
Article
The Effects of Weather on the Flight of an Invasive Bark Beetle, Pityophthorus juglandis
by Yigen Chen, Brian H. Aukema and Steven J. Seybold
Insects 2020, 11(3), 156; https://doi.org/10.3390/insects11030156 - 1 Mar 2020
Cited by 10 | Viewed by 3703
Abstract
The walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), vectors the fungus Geosmithia morbida, which has been implicated in thousand cankers disease of walnut. Little is known about the flight behavior of the insect across seasons, or about the variability in its [...] Read more.
The walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), vectors the fungus Geosmithia morbida, which has been implicated in thousand cankers disease of walnut. Little is known about the flight behavior of the insect across seasons, or about the variability in its flight patterns with weekly fluctuations in weather. We sampled flying adults weekly over a 142-week period (from 29 August, 2011 to 2 June, 2014) with 12-unit black plastic multiple funnel traps baited with a male-produced aggregation pheromone in California, USA. Up to 5000 beetles were captured per trap per week, although catches in most weeks were less than 100 insects. Trap catches were regressed against terms for precipitation, solar radiation, vapor pressure, air temperature, relative humidity, wind speed, and trap catches in preceding weeks. The number of beetles captured in each of the preceding two weeks explained most variation in a current week’s catch. This strong temporal autocorrelation was present in regression models developed for males, females, and both sexes pooled. These models were improved by including two environmental variables. Captures of P. juglandis increased with mean weekly air temperature and decreased with increasing mean minimum relative humidity. The percentage of variation in male, female, or total trap catch explained by the temporal variables and the two environmental variables in these multiple regression models ranged from 72% to 76%. While the flight of this invasive insect will likely be affected by site-specific factors as it spreads to new areas, the strong temporal correlation present in this system may provide a useful starting point for developing flight models for newly invaded areas. Full article
(This article belongs to the Special Issue Ecology and Management of Invasive Insects in Forest Ecosystems)
Show Figures

Figure 1

15 pages, 2415 KiB  
Review
Thousand Cankers Disease Complex: A Forest Health Issue that Threatens Juglans Species across the U.S.
by Dixie A. Daniels, Katheryne A. Nix, Phillip A. Wadl, Lisa M. Vito, Gregory J. Wiggins, Mark T. Windham, Bonnie H. Ownley, Paris L. Lambdin, Jerome F. Grant, Paul Merten, William E. Klingeman and Denita Hadziabdic
Forests 2016, 7(11), 260; https://doi.org/10.3390/f7110260 - 3 Nov 2016
Cited by 19 | Viewed by 8983
Abstract
Thousand Cankers Disease (TCD) is a disease complex wherein the fungus (Geosmithia morbida) is vectored by the walnut twig beetle (WTB, Pityophthorus juglandis). The disease causes mortality primarily of eastern black walnut (Juglans nigra), although other walnut and [...] Read more.
Thousand Cankers Disease (TCD) is a disease complex wherein the fungus (Geosmithia morbida) is vectored by the walnut twig beetle (WTB, Pityophthorus juglandis). The disease causes mortality primarily of eastern black walnut (Juglans nigra), although other walnut and wingnut (Pterocarya) species are also susceptible. Black walnut is native to the Eastern and Midwestern U.S. but is widely planted in western states. Total standing volume in both urban and forested settings is approximately 96 million cubic meters, and is valued at $539 billion. Although native to the Southwestern U.S., the range of WTB has expanded considerably. The spread of G. morbida coincides with that of WTB. TCD was introduced into Tennessee in 2010, and has spread to seven eastern states. Trees infected with TCD exhibit drought-like symptoms, making field detection difficult without molecular and/or morphological methods. The recently sequenced G. morbida genome will provide valuable research tools focused on understanding gene interactions between organisms involved in TCD and mechanisms of pathogenicity. With no chemical treatments available, quarantine and sanitation are preeminent options for slowing the spread of TCD, although biological control agents have been discovered. High levels of black walnut mortality due to TCD will have far-reaching implications for both eastern and western states. Full article
Show Figures

Figure 1

9 pages, 768 KiB  
Communication
Discovery of Walnut Twig Beetle, Pityophthorus juglandis, Associated with Forested Black Walnut, Juglans nigra, in the Eastern U.S.
by Gregory J. Wiggins, Jerome F. Grant, Paris L. Lambdin, Paul Merten, Katheryne A. Nix, Denita Hadziabdic and Mark T. Windham
Forests 2014, 5(6), 1185-1193; https://doi.org/10.3390/f5061185 - 28 May 2014
Cited by 17 | Viewed by 7765
Abstract
Thousand cankers disease (TCD) is an insect-mediated disease of walnut trees (Juglans spp.) involving walnut twig beetle (Pityophthorus juglandis) and a fungal pathogen (Geosmithia morbida). Although first documented on walnut species in the western U.S., TCD is now [...] Read more.
Thousand cankers disease (TCD) is an insect-mediated disease of walnut trees (Juglans spp.) involving walnut twig beetle (Pityophthorus juglandis) and a fungal pathogen (Geosmithia morbida). Although first documented on walnut species in the western U.S., TCD is now found on black walnut (J. nigra) in five states in the eastern U.S. Most collections of P. juglandis or G. morbida are from trees in agriculturally- or residentially-developed landscapes. In 2013, 16 pheromone-baited funnel traps were deployed in or near black walnuts in forested conditions to assess the risk of infestation of forested trees by P. juglandis. Four of the 16 funnel traps collected adult P. juglandis from three forested areas (one in North Carolina and two in Tennessee). These collections, while in forested settings, may still be strongly influenced by human activities. The greatest number of P. juglandis (n = 338) was collected from a forested location in an urbanized area near a known TCD-positive tree. The other two forested locations where P. juglandis (n = 3) was collected were in areas where camping is common, and infested firewood may have introduced P. juglandis unintentionally into the area. Future studies to assess P. juglandis on more isolated forested walnuts are planned. Full article
Show Figures

Figure 1

8 pages, 2790 KiB  
Communication
Initial Assessment of Thousand Cankers Disease on Black Walnut, Juglans nigra, in Eastern Tennessee
by Jerome F. Grant, Mark T. Windham, Walker G. Haun, Gregory J. Wiggins and Paris L. Lambdin
Forests 2011, 2(3), 741-748; https://doi.org/10.3390/f2030741 - 9 Sep 2011
Cited by 43 | Viewed by 9582
Abstract
In 2010, thousand cankers disease (TCD) was documented in Tennessee, representing the first confirmation of this disease in the native range of black walnut and the first known incidence of TCD east of Colorado. Tennessee Department of Agriculture personnel conducted surveys to determine [...] Read more.
In 2010, thousand cankers disease (TCD) was documented in Tennessee, representing the first confirmation of this disease in the native range of black walnut and the first known incidence of TCD east of Colorado. Tennessee Department of Agriculture personnel conducted surveys to determine the extent of TCD in counties in eastern Tennessee. Samples of symptomatic black walnuts were sent to the University of Tennessee for processing. The causative agents, walnut twig beetle, Pityophthorus juglandis, and the fungal pathogen Geosmithia morbida, were documented on the same trees in four counties. Tree mortality was observed in two counties, and tree decline was observed in at least 10 counties although it may be attributed to previous droughts or to TCD. In 2010, four confirmed counties were quarantined by TDA, and 10 buffer counties were also regulated. Research is underway to further assess the incidence and impact of TCD on black walnut in Tennessee. Full article
Show Figures

Back to TopTop