Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = voltage ride through (VRT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4596 KB  
Article
Reactive Power Based Fault Ride Through Control of IBR-Dominated Distribution Networks Under Low WSCR
by DongYeong Gwon and YunHyuk Choi
Electronics 2026, 15(3), 521; https://doi.org/10.3390/electronics15030521 - 26 Jan 2026
Abstract
This study investigated the fault ride through capability of inverter-based resources in weak distribution networks and proposes a fault-oriented reactive power compensation strategy using only point of common coupling voltage measurements. The proposed strategy determines the reactive power command based on the minimum [...] Read more.
This study investigated the fault ride through capability of inverter-based resources in weak distribution networks and proposes a fault-oriented reactive power compensation strategy using only point of common coupling voltage measurements. The proposed strategy determines the reactive power command based on the minimum phase voltage, which represents the most severely depressed phase during unbalanced faults, without fault type detection or sequence component analysis. As a result, the same control framework can be applied to single-line-to-ground, double-line-to-ground, and three-phase faults. A detailed MATLAB/Simulink model of a Korean distribution feeder was developed using actual system parameters. The proposed strategy was compared with a no control case and a conservative fixed capacity reactive power injection scheme derived from commonly adopted power factor limits. Simulation results show that the no control case provides no voltage support, while the fixed capacity approach yields limited improvement in weak grids. In contrast, the proposed strategy maintains stable inverter operation and improves voltage recovery. At locations with an extremely low weighted short circuit ratio of 0.303, the proposed strategy prevents inverter tripping during temporary faults and satisfies low voltage ride through requirements, demonstrating its practical effectiveness. Full article
(This article belongs to the Special Issue Stability Analysis and Optimal Operation in Power Electronic Systems)
Show Figures

Figure 1

18 pages, 4089 KB  
Article
A New Fast Peak Current Controller for Transient Voltage Faults for Power Converters
by Jesús Muñoz-Cruzado-Alba, Javier Villegas-Núñez, José Alberto Vite-Frías and Juan Manuel Carrasco Solís
Energies 2016, 9(1), 1; https://doi.org/10.3390/en9010001 - 22 Dec 2015
Cited by 11 | Viewed by 6024
Abstract
Power converters are the basic unit for the transient voltage fault ride through capability for most renewable distributed generators (DGs). When a transient fault happens, the grid voltage will drop suddenly and probably will also suffer a phase-jump event as well. State-of-the-art voltage [...] Read more.
Power converters are the basic unit for the transient voltage fault ride through capability for most renewable distributed generators (DGs). When a transient fault happens, the grid voltage will drop suddenly and probably will also suffer a phase-jump event as well. State-of-the-art voltage fault control techniques regulate the current injected during the grid fault. However, the beginning of the fault could be too fast for the inner current control loops of the inverter, and transient over-current would be expected. In order to avoid the excessive peak current of the methods presented in the literature, a new fast peak current control (FPCC) technique is proposed. Controlling the peak current magnitude avoids undesirable disconnection of the distributed generator in a fault state and improves the life expectancy of the converter. Experimental and simulation tests with high power converters provide the detailed behaviour of the method with excellent results. Full article
Show Figures

Figure 1

Back to TopTop