Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = volt-ampere reactive power (VAR) compensation and power quality (VPQ)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 1197 KiB  
Review
Multi-Objective Planning Techniques in Distribution Networks: A Composite Review
by Syed Ali Abbas Kazmi, Muhammad Khuram Shahzad and Dong Ryeol Shin
Energies 2017, 10(2), 208; https://doi.org/10.3390/en10020208 - 12 Feb 2017
Cited by 42 | Viewed by 7272
Abstract
Distribution networks (DNWs) are facing numerous challenges, notably growing load demands, environmental concerns, operational constraints and expansion limitations with the current infrastructure. These challenges serve as a motivation factor for various distribution network planning (DP) strategies, such as timely addressing load growth aiming [...] Read more.
Distribution networks (DNWs) are facing numerous challenges, notably growing load demands, environmental concerns, operational constraints and expansion limitations with the current infrastructure. These challenges serve as a motivation factor for various distribution network planning (DP) strategies, such as timely addressing load growth aiming at prominent objectives such as reliability, power quality, economic viability, system stability and deferring costly reinforcements. The continuous transformation of passive to active distribution networks (ADN) needs to consider choices, primarily distributed generation (DG), network topology change, installation of new protection devices and key enablers as planning options in addition to traditional grid reinforcements. Since modern DP (MDP) in deregulated market environments includes multiple stakeholders, primarily owners, regulators, operators and consumers, one solution fit for all planning scenarios may not satisfy all these stakeholders. Hence, this paper presents a review of several planning techniques (PTs) based on mult-objective optimizations (MOOs) in DNWs, aiming at better trade-off solutions among conflicting objectives and satisfying multiple stakeholders. The PTs in the paper spread across four distinct planning classifications including DG units as an alternative to costly reinforcements, capacitors and power electronic devices for ensuring power quality aspects, grid reinforcements, expansions, and upgrades as a separate category and network topology alteration and reconfiguration as a viable planning option. Several research works associated with multi-objective planning techniques (MOPT) have been reviewed with relevant models, methods and achieved objectives, abiding with system constraints. The paper also provides a composite review of current research accounts and interdependence of associated components in the respective classifications. The potential future planning areas, aiming at the multi-objective-based frameworks, are also presented in this paper. Full article
(This article belongs to the Collection Smart Grid)
Show Figures

Graphical abstract

Back to TopTop