Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = virgin asphalt–RAM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14325 KiB  
Article
Fatigue-Healing Performance Analysis of Warm-Mix Rubber Asphalt Mastic Using the Simplified Viscoelastic Continuum Damage Theory
by Ping Li, Xiao Li, Shangjun Yu, Linhao Sun, Jinchao Yue and Ruixia Li
Coatings 2024, 14(7), 914; https://doi.org/10.3390/coatings14070914 - 21 Jul 2024
Cited by 1 | Viewed by 1820
Abstract
As a green and low-carbon road material, warm-mix rubber asphalt (WMRA) has received extensive attention from scholars for its road performance. In the in-depth study of its properties, the fatigue characteristics of WMRA are particularly critical. However, in current studies on asphalt fatigue [...] Read more.
As a green and low-carbon road material, warm-mix rubber asphalt (WMRA) has received extensive attention from scholars for its road performance. In the in-depth study of its properties, the fatigue characteristics of WMRA are particularly critical. However, in current studies on asphalt fatigue performance, its self-healing ability is often underestimated or neglected. Furthermore, the simplified viscoelastic continuum damage theory (S-VECD), with its accuracy, speed, and convenience, provides a powerful tool for analyzing asphalt fatigue performance. Therefore, to analyze the fatigue and self-healing performances of WMRA in practical applications, four sample materials were selected in this study: virgin asphalt mastic (VAM), rubber asphalt mastic (RAM), Sasobit rubber asphalt mastic (SRAM), and Evotherm rubber asphalt mastic (ERAM). Subsequently, the samples were subjected to a comprehensive experimental design with frequency sweep tests, linear amplitude sweep tests, and multiple intermittent loading time sweep tests under different aging conditions. The fatigue and self-healing performances of different aging degrees and different types of WMRA were evaluated based on the S-VECD theory. The results show that aging reduces the fatigue and self-healing performances of asphalt mastic to a certain extent, and at a 7% strain, the fatigue life of SRAM after long-term aging is only 30.7% of the life of the unaged sample. The greater the aging degree, the more pronounced the effect. Under different aging levels, the warm-mix agent can significantly improve the fatigue and self-healing performances of rubber asphalt mastic. After undergoing ten fatigue intermittent loading tests, the recovery rate of the complex shear modulus for the long-term aged VAM was 0.65, which is lower than that of SRAM under the same conditions, and the warm mix can further extend the fatigue life of rubber asphalt by improving the self-healing properties of the asphalt. The role of Sasobit in enhancing the fatigue and self-healing performances of rubber asphalt mastic is more significant. This study can provide a theoretical basis for the promotion and application of WMRA pavements and contribute to the sustainable development of road construction. Full article
Show Figures

Figure 1

20 pages, 9507 KiB  
Article
Use of MD Simulation for Investigating Diffusion Behaviors between Virgin Asphalt and Recycled Asphalt Mastic
by Shuqi Chen, Qing Yang, Xin Qiu, Ke Liu, Shanglin Xiao and Wenyi Xu
Buildings 2023, 13(4), 862; https://doi.org/10.3390/buildings13040862 - 25 Mar 2023
Cited by 4 | Viewed by 2173
Abstract
The study aims at investigating diffusion behaviors between virgin asphalt and recycled asphalt mastic (RAM) at an atomistic scale. Firstly, a mutual diffusion model of virgin asphalt–RAM considering the actual mass ratio of filler to asphalt binder (F/A) condition was developed by molecular [...] Read more.
The study aims at investigating diffusion behaviors between virgin asphalt and recycled asphalt mastic (RAM) at an atomistic scale. Firstly, a mutual diffusion model of virgin asphalt–RAM considering the actual mass ratio of filler to asphalt binder (F/A) condition was developed by molecular dynamic (MD)simulation. Secondly, the indexes of relative concentration (RC), radial distribution function (RDF) and mean square displacement (MSD) were used to analyze the molecular arrangement characteristics of polar components in the diffusion processes at different temperatures. Then, the blending efficiency of virgin asphalt–RAM was evaluated by Fick’s second law and the binding energy. The results indicate that the reliability of the RAM model was validated by thermodynamics properties. The results of RC and RDF show that the diffusion direction of virgin asphalt–RAM is not changed by the presence of mineral fillers. However, it will inhibit the occurrence of diffusion behaviors, and the aggregation of molecules in the blending zone increases due to the adsorption of mineral fillers, which would become a barrier to molecular diffusion. The development of MSD indicates that the diffusion coefficients of molecules in both virgin–aged asphalt and virgin asphalt–RAM are on the rise with the increase in temperature. Compared with the virgin–aged asphalt, the molecular migration speed in virgin asphalt–RAM is relatively slow. According to Fick’s second law and the binding energy, diffusion behaviors are dominated by the nonpolar components. The existence of mineral fillers has the greatest effect on the nonpolar components in diffusion. It is suggested that rejuvenator containing more aromatic components should be added or the temperature controlled within 433.15–443.15 K to promote blending efficiency. The research results contribute to a deeper understanding about diffusion behaviors of virgin asphalt–RAM, serving as a benchmark for further study of rejuvenation using computational experiments. Full article
(This article belongs to the Special Issue Advances in Composite Construction in Civil Engineering)
Show Figures

Figure 1

18 pages, 6696 KiB  
Article
Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag
by Zipeng Wang, Shaopeng Wu, Chao Yang, Jun Xie, Yongli Xiao, Zenggang Zhao, Fusong Wang and Lei Zhang
Materials 2022, 15(14), 5005; https://doi.org/10.3390/ma15145005 - 19 Jul 2022
Cited by 21 | Viewed by 2338
Abstract
Circular utilization of reclaimed asphalt pavement (RAP) has received extensive attention for its economic and environmental benefits. The application of recycled asphalt mixtures (RAM) in the upper layer of asphalt pavement faces the issue of inferior anti-slip performance and durability. This study aims [...] Read more.
Circular utilization of reclaimed asphalt pavement (RAP) has received extensive attention for its economic and environmental benefits. The application of recycled asphalt mixtures (RAM) in the upper layer of asphalt pavement faces the issue of inferior anti-slip performance and durability. This study aims to recycle steel slag as virgin aggregates in RAM and quantitatively evaluate the service performance of RAM with steel slag. Steel slag and basalt RAM were firstly fabricated and the five different RAP contents were involved. Then tests of Marshall stability, indirect tensile strength and Cantabro spatter loss were conducted to investigate the moisture susceptibility of RAM. Moreover, their high temperature stability, crack resistance and skid resistance were characterized. Indirect tensile fatigue test combined with Hamburg wheel tracking test were carried out to discuss the durability of RAM. The comprehensive performance of RAM with steel slag were quantitatively assessed based on an improved radar chart evaluation method. The results show that involving steel slag reveals a remarkable enhancement function on water stability, high and low temperature performance, skid resistance and fatigue resistance of RAM. Steel slag RAM with 50% RAP content demonstrates a rutting depth of 7.60 mm and a creep slope of 2.54 × 10−4, indicating its superior durability in high temperature and water environment. Compared with the comprehensive evaluation function of 0.5336 for basalt RAM with 30% RAP dosage, steel slag RAM reaches 0.7801, which represents its preferable road performance. Full article
(This article belongs to the Special Issue Advances in Regenerated Asphalt Mixtures)
Show Figures

Figure 1

14 pages, 2352 KiB  
Article
SuPerPave® Mix Design Method of Recycled Asphalt Concrete Applied in the European Standards Context
by Saverio Olita and Donato Ciampa
Sustainability 2021, 13(16), 9079; https://doi.org/10.3390/su13169079 - 13 Aug 2021
Cited by 4 | Viewed by 3813
Abstract
The recycling of road and airport asphalt pavements requires greater reliability of mix design in order to ensure proper rehabilitation and effective reuse of recycled asphalt concrete. Currently, internationally, the most effective mix design procedures for recycled asphalt concrete with RAP (Reclaimed Asphalt [...] Read more.
The recycling of road and airport asphalt pavements requires greater reliability of mix design in order to ensure proper rehabilitation and effective reuse of recycled asphalt concrete. Currently, internationally, the most effective mix design procedures for recycled asphalt concrete with RAP (Reclaimed Asphalt Pavement) refer to guidelines developed by SuPerPave® Mixtures Expert Task Group. In this paper, according to the requirements of the European standard EN 13108, the authors investigated the reliability of the above mix design procedure. In particular, the SuPerPave® mix design guidelines were applied for dosing components of wearing course layer recycled asphalt mixture and for the determination of PG (Performance Grade) and critical temperatures of binder contained in RAP (RAP binder) and of binder added ex-novo (virgin binder). The experimental research program started from RAM (Reclaimed Aggregate Material) grading characterization and RAP binder content determination. Afterwards, rheological characterization of the RAP binder and selected virgin binder was carried out using the DSR (Dynamic Shear Rheometer) and BBR (Bending Beam Rheometer) devices. This step allowed us to identify the right virgin binder percentages to be added to RAP binder. Then, in compliance with European standards, the mix design study of recycled mixtures was carried out, identifying the necessary granulometric integrations and the virgin-binder-appropriate percentages to be added. In this phase, three different RAP percentages were used: 30%, 40%, and 50%. Finally, the experimental plan was completed with a preliminary mechanical characterization of the studied recycled asphalt mixtures. The results showed that the implemented rational mix design guarantees performance levels of wearing course layer recycled mixtures that are fully in compliance with European standards. Full article
(This article belongs to the Special Issue Smart and Sustainable Streets)
Show Figures

Figure 1

14 pages, 3385 KiB  
Article
Quantitative Analysis of the Blending Degree of Virgin and RAP Binders in Recycled Asphalt Mixtures with a High RAP Content
by Zhen Yang, Guoyi Zhuang, Xiaoshu Wei, Jintao Wei, Huayang Yu and Wei Xu
Appl. Sci. 2018, 8(12), 2668; https://doi.org/10.3390/app8122668 - 18 Dec 2018
Cited by 20 | Viewed by 3955
Abstract
Recycled asphalt mixtures (RAM), which are prepared by blending reclaimed asphalt pavement (RAP), virgin bitumen and mineral additives, provide a variety of advantages, including resource recycling, reductions in costs, and reduced negative environmental impacts. However, multiple agencies have expressed concerns about the utilization [...] Read more.
Recycled asphalt mixtures (RAM), which are prepared by blending reclaimed asphalt pavement (RAP), virgin bitumen and mineral additives, provide a variety of advantages, including resource recycling, reductions in costs, and reduced negative environmental impacts. However, multiple agencies have expressed concerns about the utilization ratio of RAP; thus, a comprehensive understanding of the blending degree of virgin and RAP binders in RAM would be significantly helpful for promoting the application of RAP. This study aims to quantitatively analyze the blending degree of virgin and RAP binders in RAM with high RAP contents. Carboxyl-terminated butadiene acrylonitrile (CTBN) was utilized as a tracer to mark the virgin bitumen; in addition, Fourier transform infrared (FTIR) spectroscopy was used to develop the structural index of CTBN (ICTBN). By establishing the standard curve between ICTBN and the CTBN content, the blending degree of virgin and RAP binders at different locations within RAM can be determined quantitatively. The study results indicate that the RAP binder was completely blended with the virgin bitumen in the outer RAP layer. However, the blending degree decreased with an increase in the RAP depth, and the blending degree in the inner RAP layer was only approximately half that which was found in the case of complete blending. Full article
(This article belongs to the Special Issue Asphalt Materials)
Show Figures

Figure 1

Back to TopTop