Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = vermiculite forsterite precursor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3292 KiB  
Article
Clay/Fly Ash Bricks Evaluated in Terms of Kaolin and Vermiculite Precursors of Mullite and Forsterite, and Photocatalytic Decomposition of the Methanol–Water Mixture
by Marta Valášková, Veronika Blahůšková, Miroslava Filip Edelmannová, Lenka Matějová, Karel Soukup and Eva Plevová
Minerals 2023, 13(9), 1114; https://doi.org/10.3390/min13091114 - 23 Aug 2023
Cited by 3 | Viewed by 1803
Abstract
This study focused on mullite-based and forsterite-based ceramic bricks fired at 1000 °C from mixtures of fly ash (40 mass%) and kaolins or vermiculites (60 mass%). The structural, physical, and mechanical properties were characterized by X-ray powder diffraction, nitrogen physisorption, mercury porosimetry, thermogravimetry, [...] Read more.
This study focused on mullite-based and forsterite-based ceramic bricks fired at 1000 °C from mixtures of fly ash (40 mass%) and kaolins or vermiculites (60 mass%). The structural, physical, and mechanical properties were characterized by X-ray powder diffraction, nitrogen physisorption, mercury porosimetry, thermogravimetry, and compressive strength. In the development of green-material-derived photocatalysts, we evaluated fly ash ceramic bricks based on kaolins and vermiculites, which deserve deeper research. Alkali potassium in the mixtures positively influenced the reduction of the firing temperature, shrinkage, small porosity, and high compressive strength of ceramic bricks. The crystallization of mullite in fly ash was observed on exotherm maxima from 813 to 1025 °C. Muscovite/illite admixture in kaolins precursor of mullite-based ceramics reduced the crystallization temperature of mullite by up to 70 °C. Vermiculite–hydrobiotite–phlogopite in mixed layers of a raw vermiculite precursor of forsterite-based ceramics controlled the formation of enstatite and forsterite in the temperature range from 736 ± 6 °C to 827 ± 6 °C. Mullite- and forsterite-based ceramic bricks were also investigated for photocatalytic hydrogen production. The photocatalytic generation of hydrogen in the presence of mullite-based ceramic bricks was positively correlated with the percentages of Fe2O3 in the lattice of mullites and in the presence of forsterite-based ceramics with the presence of diopside. Mullite-based ceramic produced the highest yield of hydrogen (320 µmol/gcat after 4 h of irradiation) in the presence of mullite with the highest 10.4% substitution of Fe2O3 in the lattice. The forsterite-based ceramic produced the highest hydrogen yields (354 µmol/gcat after 4 h of irradiation) over more active diopside than forsterite. Full article
(This article belongs to the Special Issue Clay Minerals and Waste Fly Ash Ceramics, Volume II)
Show Figures

Figure 1

Back to TopTop