Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = vdW homo- and heterostructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8330 KiB  
Article
Electron Density and Its Relation with Electronic and Optical Properties in 2D Mo/W Dichalcogenides
by Pingping Jiang, Marie-Christine Record and Pascal Boulet
Nanomaterials 2020, 10(11), 2221; https://doi.org/10.3390/nano10112221 - 8 Nov 2020
Cited by 13 | Viewed by 3522
Abstract
Two-dimensional MX2 (M = Mo, W; X = S, Se, Te) homo- and heterostructures have attracted extensive attention in electronics and optoelectronics due to their unique structures and properties. In this work, the layer-dependent electronic and optical properties have been studied by [...] Read more.
Two-dimensional MX2 (M = Mo, W; X = S, Se, Te) homo- and heterostructures have attracted extensive attention in electronics and optoelectronics due to their unique structures and properties. In this work, the layer-dependent electronic and optical properties have been studied by varying layer thickness and stacking order. Based on the quantum theory of atoms in molecules, topological analyses on interatomic interactions of layered MX2 and WX2/MoX2, including bond degree (BD), bond length (BL), and bond angle (BA), have been detailed to probe structure-property relationships. Results show that M-X and X-X bonds are strengthened and weakened in layered MX2 compared to the counterparts in bulks. X-X and M-Se/Te are weakened at compressive strain while strengthened at tensile strain and are more responsive to the former than the latter. Discordant BD variation of individual parts of WX2/MoX2 accounts for exclusively distributed electrons and holes, yielding type-II band offsets. X-X BL correlates positively to binding energy (Eb), while X-X BA correlates negatively to lattice mismatch (lm). The resulting interlayer distance limitation evidences constraint-free lattice of vdW structure. Finally, the connection between microscopic interatomic interaction and macroscopic electromagnetic behavior has been quantified firstly by a cubic equation relating to weighted BD summation and static dielectric constant. Full article
(This article belongs to the Special Issue 2D Materials and Their Heterostructures and Superlattices)
Show Figures

Graphical abstract

16 pages, 5799 KiB  
Article
Structure-Property Relationships of 2D Ga/In Chalcogenides
by Pingping Jiang, Pascal Boulet and Marie-Christine Record
Nanomaterials 2020, 10(11), 2188; https://doi.org/10.3390/nano10112188 - 2 Nov 2020
Cited by 4 | Viewed by 2515
Abstract
Two-dimensional MX (M = Ga, In; X = S, Se, Te) homo- and heterostructures are of interest in electronics and optoelectronics. Structural, electronic and optical properties of bulk and layered MX and GaX/InX heterostructures have been investigated comprehensively using density functional theory (DFT) [...] Read more.
Two-dimensional MX (M = Ga, In; X = S, Se, Te) homo- and heterostructures are of interest in electronics and optoelectronics. Structural, electronic and optical properties of bulk and layered MX and GaX/InX heterostructures have been investigated comprehensively using density functional theory (DFT) calculations. Based on the quantum theory of atoms in molecules, topological analyses of bond degree (BD), bond length (BL) and bond angle (BA) have been detailed for interpreting interatomic interactions, hence the structure–property relationship. The X–X BD correlates linearly with the ratio of local potential and kinetic energy, and decreases as X goes from S to Te. For van der Waals (vdW) homo- and heterostructures of GaX and InX, a cubic relationship between microscopic interatomic interaction and macroscopic electromagnetic behavior has been established firstly relating to weighted absolute BD summation and static dielectric constant. A decisive role of vdW interaction in layer-dependent properties has been identified. The GaX/InX heterostructures have bandgaps in the range 0.23–1.49 eV, absorption coefficients over 10−5 cm−1 and maximum conversion efficiency over 27%. Under strain, discordant BD evolutions are responsible for the exclusively distributed electrons and holes in sublayers of GaX/InX. Meanwhile, the interlayer BA adjustment with lattice mismatch explains the constraint-free lattice of the vdW heterostructure. Full article
(This article belongs to the Special Issue 2D Materials and Their Heterostructures and Superlattices)
Show Figures

Figure 1

Back to TopTop