Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = utility-based shortfall risk measures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 596 KiB  
Article
Shortfall-Based Wasserstein Distributionally Robust Optimization
by Ruoxuan Li, Wenhua Lv and Tiantian Mao
Mathematics 2023, 11(4), 849; https://doi.org/10.3390/math11040849 - 7 Feb 2023
Viewed by 2140
Abstract
In this paper, we study a distributionally robust optimization (DRO) problem with affine decision rules. In particular, we construct an ambiguity set based on a new family of Wasserstein metrics, shortfall–Wasserstein metrics, which apply normalized utility-based shortfall risk measures to summarize the transportation [...] Read more.
In this paper, we study a distributionally robust optimization (DRO) problem with affine decision rules. In particular, we construct an ambiguity set based on a new family of Wasserstein metrics, shortfall–Wasserstein metrics, which apply normalized utility-based shortfall risk measures to summarize the transportation cost random variables. In this paper, we demonstrate that the multi-dimensional shortfall–Wasserstein ball can be affinely projected onto a one-dimensional one. A noteworthy result of this reformulation is that our program benefits from finite sample guarantee without a dependence on the dimension of the nominal distribution. This distributionally robust optimization problem also has computational tractability, and we provide a dual formulation and verify the strong duality that enables a direct and concise reformulation of this problem. Our results offer a new DRO framework that can be applied in numerous contexts such as regression and portfolio optimization. Full article
Show Figures

Figure 1

24 pages, 370 KiB  
Article
Modeling Portfolio Credit Risk Taking into Account the Default Correlations Using a Copula Approach: Implementation to an Italian Loan Portfolio
by Annalisa Di Clemente
J. Risk Financial Manag. 2020, 13(6), 129; https://doi.org/10.3390/jrfm13060129 - 17 Jun 2020
Cited by 2 | Viewed by 4722
Abstract
This work aims to illustrate an advanced quantitative methodology for measuring the credit risk of a loan portfolio allowing for diversification effects. Also, this methodology can allocate the credit capital coherently to each counterparty in the portfolio. The analytical approach used for estimating [...] Read more.
This work aims to illustrate an advanced quantitative methodology for measuring the credit risk of a loan portfolio allowing for diversification effects. Also, this methodology can allocate the credit capital coherently to each counterparty in the portfolio. The analytical approach used for estimating the portfolio credit risk is a binomial type based on a Monte Carlo Simulation. This method takes into account the default correlations among the credit counterparties in the portfolio by following a copula approach and utilizing the asset return correlations of the obligors, as estimated by rigorous statistical methods. Moreover, this model considers the recovery rates as stochastic and dependent on each other and on the time until defaults. The methodology utilized for coherently allocating credit capital in the portfolio estimates the marginal contributions of each obligor to the overall risk of the loan portfolio in terms of Expected Shortfall (ES), a risk measure more coherent and conservative than the traditional measure of Value-at-Risk (VaR). Finally, this advanced analytical structure is implemented to a hypothetical, but typical, loan portfolio of an Italian commercial bank operating across the overall national country. The national loan portfolio is composed of 17 sub-portfolios, or geographic clusters of credit exposures to 10,500 non-financial firms (or corporates) belonging to each geo-cluster or sub-portfolio. The outcomes, in terms of correlations, portfolio risk measures and capital allocations obtained from this advanced analytical framework, are compared with the results found by implementing the Internal Rating Based (IRB) approach of Basel II and III. Our chief conclusion is that the IRB model is unable to capture the real credit risk of loan portfolios because it does not take into account the actual dependence structure among the default events, and between the recovery rates and the default events. We underline that the adoption of this regulatory model can produce a dangerous underestimation of the portfolio credit risk, especially when the economic uncertainty and the volatility of the financial markets increase. Full article
(This article belongs to the Special Issue Quantitative Risk)
Back to TopTop