Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = uridine 5′-diphosphoglucuronosyl transferase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2229 KB  
Article
Comprehensive Investigation of Stereoselective Food Drug Interaction Potential of Resveratrol on Nine P450 and Six UGT Isoforms in Human Liver Microsomes
by Seung-Bae Ji, So-Young Park, Subin Bae, Hyung-Ju Seo, Sin-Eun Kim, Gyung-Min Lee, Zhexue Wu and Kwang-Hyeon Liu
Pharmaceutics 2021, 13(9), 1419; https://doi.org/10.3390/pharmaceutics13091419 - 7 Sep 2021
Cited by 14 | Viewed by 4761
Abstract
The stereoselectivity of the food drug inhibition potential of resveratrol on cytochrome P450s and uridine 5′-diphosphoglucuronosyl transferases was investigated in human liver microsomes. Resveratrol enantiomers showed stereoselective inhibition of CYP2C9, CYP3A, and UGT1A1. The inhibitions of CYP1A2, CYP2B6, and CYP2C19 by resveratrol were [...] Read more.
The stereoselectivity of the food drug inhibition potential of resveratrol on cytochrome P450s and uridine 5′-diphosphoglucuronosyl transferases was investigated in human liver microsomes. Resveratrol enantiomers showed stereoselective inhibition of CYP2C9, CYP3A, and UGT1A1. The inhibitions of CYP1A2, CYP2B6, and CYP2C19 by resveratrol were stereo-nonselective. The estimated Ki values determined for CYP1A2 were 13.8 and 9.2 μM for trans- and cis-resveratrol, respectively. Trans-resveratrol noncompetitively inhibited CYP3A and UGT1A1 activities with Ki values of 23.8 and 27.4 μM, respectively. Trans-resveratrol inhibited CYP1A2, CYP2C19, CYP2E1, and CYP3A in a time-dependent manner with Ki shift values >2.0, while cis-resveratrol time-dependently inhibited CYP2C19 and CYP2E1. The time-dependent inhibition of trans-resveratrol against CYP3A4, CYP2E1, CYP2C19, and CYP1A2 was elucidated using glutathione as a trapping reagent. This information helped the prediction of food drug interaction potentials between resveratrol and co-administered drugs which are mainly metabolized by UGT1A1, CYP1A2, CYP2C19, CYP2E1, and CYP3A. Full article
(This article belongs to the Special Issue Pharmacokinetics and Drug Interactions)
Show Figures

Figure 1

14 pages, 1103 KB  
Article
Inhibitory Effects of Schisandra Lignans on Cytochrome P450s and Uridine 5′-Diphospho-Glucuronosyl Transferases in Human Liver Microsomes
by Hyung-Ju Seo, Seung-Bae Ji, Sin-Eun Kim, Gyung-Min Lee, So-Young Park, Zhexue Wu, Dae Sik Jang and Kwang-Hyeon Liu
Pharmaceutics 2021, 13(3), 371; https://doi.org/10.3390/pharmaceutics13030371 - 10 Mar 2021
Cited by 20 | Viewed by 5031
Abstract
Schisandra chinensis has been widely used as a traditional herbal medicine to treat chronic coughs, fatigue, night sweats, and insomnia. Numerous bioactive components including lignans have been identified in this plant. Lignans with a dibenzocyclooctadiene moiety have been known to possess anti-cancer, anti-inflammatory, [...] Read more.
Schisandra chinensis has been widely used as a traditional herbal medicine to treat chronic coughs, fatigue, night sweats, and insomnia. Numerous bioactive components including lignans have been identified in this plant. Lignans with a dibenzocyclooctadiene moiety have been known to possess anti-cancer, anti-inflammatory, and hepatoprotective activity. Fragmentary studies have reported the ability of some lignans to modulate some cytochrome P450 (P450) enzymes. Herein, we investigated the drug interaction potential of six dibenzocyclooctadiene lignans (schisandrin, gomisin A, B, C, and N, and wuweizisu C) on nine P450 enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A) and six uridine 5′-diphosphoglucuronosyl transferase (UGT) enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) using human liver microsomes. We found that lignans with one or two methylenedioxyphenyl groups inhibited CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP2E1 activities in a time- and concentration-dependent like their CYP3A inhibition. In comparison, these lignans do not induce time-dependent inhibition of CYP1A2, CYP2A6, and CYP2D6. The time-dependent inhibition of gomisin A against CYP2C8, CYP2C19, and CYP3A4 was also elucidated using glutathione as a trapping reagent of reactive carbene metabolites given that gomisin A strongly inhibits these P450 enzymes in a time-dependent manner. A glutathione conjugate of gomisin A was generated in reactions with human recombinant CYP2C8, CYP2C19, and CYP3A4. This suggests that the time-dependent inhibition of gomisin A against CYP2C8, CYP2C9, and CYP3A4 is due to the production of carbene reactive metabolite. Six of the lignans we tested inhibited the activities of six UGT to a limited extent (IC50 > 15 μM). This information may aid the prediction of possible drug interactions between Schisandra lignans and any co-administered drugs which are mainly metabolized by P450s. Full article
(This article belongs to the Special Issue Pharmacokinetics and Drug Interactions)
Show Figures

Figure 1

13 pages, 1695 KB  
Article
Strong and Selective Inhibitory Effects of the Biflavonoid Selamariscina A against CYP2C8 and CYP2C9 Enzyme Activities in Human Liver Microsomes
by So-Young Park, Phi-Hung Nguyen, Gahyun Kim, Su-Nyeong Jang, Ga-Hyun Lee, Nguyen Minh Phuc, Zhexue Wu and Kwang-Hyeon Liu
Pharmaceutics 2020, 12(4), 343; https://doi.org/10.3390/pharmaceutics12040343 - 10 Apr 2020
Cited by 20 | Viewed by 4523
Abstract
Like flavonoids, biflavonoids, dimeric flavonoids, and polyphenolic plant secondary metabolites have antioxidant, antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. However, there is limited data on their effects on cytochrome P450 (P450) and uridine 5′-diphosphoglucuronosyl transferase (UGT) enzyme activities. In this study we evaluate the [...] Read more.
Like flavonoids, biflavonoids, dimeric flavonoids, and polyphenolic plant secondary metabolites have antioxidant, antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. However, there is limited data on their effects on cytochrome P450 (P450) and uridine 5′-diphosphoglucuronosyl transferase (UGT) enzyme activities. In this study we evaluate the inhibitory potential of five biflavonoids against nine P450 activities (P450s1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A) in human liver microsomes (HLMs) using cocktail incubation and liquid chromatography-tandem mass spectrometry (LC–MS/MS). The most strongly inhibited P450 activity was CYP2C8-mediated amodiaquine N-dealkylation with IC50 ranges of 0.019~0.123 μM. In addition, the biflavonoids—selamariscina A, amentoflavone, robustaflavone, cupressuflavone, and taiwaniaflavone—noncompetitively inhibited CYP2C8 activity with respective Ki values of 0.018, 0.083, 0.084, 0.103, and 0.142 μM. As selamariscina A showed the strongest effects, we then evaluated it against six UGT isoforms, where it showed weaker inhibition (UGTs1A1, 1A3, 1A4, 1A6, 1A9, and 2B7, IC50 > 1.7 μM). Returning to the P450 activities, selamariscina A inhibited CYP2C9-mediated diclofenac hydroxylation and tolbutamide hydroxylation with respective Ki values of 0.032 and 0.065 μM in a competitive and noncompetitive manner. However, it only weakly inhibited CYP1A2, CYP2B6, and CYP3A with respective Ki values of 3.1, 7.9, and 4.5 μM. We conclude that selamariscina A has selective and strong inhibitory effects on the CYP2C8 and CYP2C9 isoforms. This information might be useful in predicting herb-drug interaction potential between biflavonoids and co-administered drugs mainly metabolized by CYP2C8 and CYP2C9. In addition, selamariscina A might be used as a strong CYP2C8 and CYP2C9 inhibitor in P450 reaction-phenotyping studies to identify drug-metabolizing enzymes responsible for the metabolism of new chemicals. Full article
(This article belongs to the Special Issue Drug–Drug Interactions)
Show Figures

Graphical abstract

Back to TopTop