Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = urban cadastral map enrichment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7452 KiB  
Article
Smart Urban Cadastral Map Enrichment—A Machine Learning Method
by Alireza Hajiheidari, Mahmoud Reza Delavar and Abbas Rajabifard
ISPRS Int. J. Geo-Inf. 2024, 13(3), 80; https://doi.org/10.3390/ijgi13030080 - 4 Mar 2024
Cited by 2 | Viewed by 3788
Abstract
Enriching and updating maps are among the most important tasks of any urban management organization for informed decision making. Urban cadastral map enrichment is a time-consuming and costly process, which needs an expert’s opinion for quality control. This research proposes a smart framework [...] Read more.
Enriching and updating maps are among the most important tasks of any urban management organization for informed decision making. Urban cadastral map enrichment is a time-consuming and costly process, which needs an expert’s opinion for quality control. This research proposes a smart framework to enrich a cadastral base map using a more up-to-date map automatically by machine learning algorithms. The proposed framework has three main steps, including parcel matching, parcel change detection and base map enrichment. The matching step is performed by checking the center point of each parcel in the other map parcels. Support vector machine and random forest classification algorithms are used to detect the changed parcels in the base map. The proposed models employ the genetic algorithm for feature selection and grey wolf optimization and Harris hawks optimization for hyperparameter optimization to improve accuracy and performance. By assessing the accuracies of the models, the random forest model with feature selection and grey wolf optimization, with an F1-score of 0.9018, was selected for the parcel change detection method. Finally, the detected changed parcels in the base map are deleted and relocated automatically with corresponding parcels in the more up-to-date map by the affine transformation. Full article
(This article belongs to the Topic Geocomputation and Artificial Intelligence for Mapping)
Show Figures

Figure 1

Back to TopTop