Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = upturned flaps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 26287 KiB  
Article
Implications of Salt Diapirism in Syn-Depositional Architecture of a Carbonate Margin-to-Edge Transition: An Example from Plataria Syncline, Ionian Zone, NW Greece
by Ioannis Vakalas, Sotirios Kokkalas, Panagiotis Konstantopoulos, Constantinos Tzimeas, Isidoros Kampolis, Helen Tsiglifi, Ruben Pérez-Martin, Pablo Hernandez-Jiménez and Juan Pablo Pita-Gutierrez
Appl. Sci. 2023, 13(12), 7043; https://doi.org/10.3390/app13127043 - 12 Jun 2023
Cited by 5 | Viewed by 2372
Abstract
The present study examines the imprint of salt tectonics on carbonate depositional patterns of the Ionian zone platform edge to slope transition. The study area is part of an overturned rim syncline adjacent to a salt diapir. The Ionian zone is made up [...] Read more.
The present study examines the imprint of salt tectonics on carbonate depositional patterns of the Ionian zone platform edge to slope transition. The study area is part of an overturned rim syncline adjacent to a salt diapir. The Ionian zone is made up of three distinct stratigraphic sequences (pre-, syn- and post-rift sequences) represented by evaporites and shallow water carbonates at the base that pass gradually to a sequence consisting of pelagic limestones with shale intervals. In the study area, six cross sections were constructed, mainly covering the edge-to-slope overturned succession of Early Cretaceous to Eocene carbonates (post-rift stage) in the northern limb of the syncline. In the measured sections, abrupt changes in sediment texture resulted in the formation of distinct, thick-bedded carbonate layers, identified as packstones to grainstones–floatstones, with abundant fossil fragments, indicating deposition by debrites in a platform slope or slope-toe environment. Planar and ripple cross-lamination also suggest the involvement of turbidity currents in the depositional process. In the upper levels of the Lower Cretaceous carbonates, chert bodies with irregular shapes indicate soft sediment deformation due to instability of the slope triggered by salt intrusion. Internal unconformities identified in the field and in the available seismic data combined with the vertical to overturned dipping of the strata correspond to a basal megaflap configuration. Syn-sedimentary deformation resulted in the accumulation of debritic and turbiditic layers, while the compressional regime established in the area from the Late Cretaceous to Early Eocene enhanced the fracture porosity of carbonates, which could eventually affect the reservoir properties. Full article
(This article belongs to the Special Issue Advances in Structural Geology)
Show Figures

Figure 1

Back to TopTop