Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ultra-low flush toilets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3058 KiB  
Article
Towards a Solid Particle Hydrodynamic (SPH)-Based Solids Transport Model Applied to Ultra-Low Water Usage Sanitation in Developing Countries
by Michael Gormley and Sophie MacLeod
Water 2021, 13(4), 441; https://doi.org/10.3390/w13040441 - 8 Feb 2021
Viewed by 2508
Abstract
Distribution of toilet facilities and low-cost small-bore simplified sewerage systems (SS) in peri-urban areas provide opportunities to improve public health, provide safely managed sanitation, and protect the environment in low-to-middle income countries. Smoothed particle hydrodynamics (SPH) offers opportunities for optimisation of ultra-low water [...] Read more.
Distribution of toilet facilities and low-cost small-bore simplified sewerage systems (SS) in peri-urban areas provide opportunities to improve public health, provide safely managed sanitation, and protect the environment in low-to-middle income countries. Smoothed particle hydrodynamics (SPH) offers opportunities for optimisation of ultra-low water usage systems, but not without computational challenges. Results from SPH modelling of low cost, low water usage sanitary appliances were compared to a validated 1D finite difference model (DRAINET) for evaluation and calibration. An evaluation of system performance linked solid transport capabilities to physical geometries. The SPH model was developed for a pour-flush toilet pan connected to a 100 mm diameter pipe. The scheme utilized a free surface turbulent model to evaluate solid (faecal) transport efficacy. Performance was greatly influenced by the artificial viscosity factor, ViscoBoundFactor, within SPH, relating to the interaction of fluid and fluid particles and fluid and boundary particles. Results indicate that an increase in this factor leads to a reduction in fluid velocity with an attendant reduction in solid transportation distance, leading to inaccuracies. Other issues such as the use of density and mass in the definition of solid characteristics made it less predictable than the established 1D model for predicting solid transport. Overall, SPH was found to be useful for characterising the geometry of the pour flush pan but not for whole system assessment. A hybrid method is thus recommended whereby the design and performance characteristics for the input stage can be modelling in SPH but the whole system pipe network evaluation is better suited to the 1D DRAINET model. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

17 pages, 2500 KiB  
Article
Campus Study of the Impact of Ultra-Low Flush Toilets on Sewerage Networks and Water Usage
by Peter Melville-Shreeve, Sarah Cotterill, Alex Newman and David Butler
Water 2021, 13(4), 419; https://doi.org/10.3390/w13040419 - 5 Feb 2021
Cited by 5 | Viewed by 5137
Abstract
Water demand management often focuses on quantifying the benefits of water efficiency rather than the potential impact of reduced flows on the sewer network. This study assessed the impact of a high-density deployment of ultra-low flush toilets (ULFT). A pre-installation washroom survey was [...] Read more.
Water demand management often focuses on quantifying the benefits of water efficiency rather than the potential impact of reduced flows on the sewer network. This study assessed the impact of a high-density deployment of ultra-low flush toilets (ULFT). A pre-installation washroom survey was carried out in July 2018. Water demand and sewer network condition were assessed ahead of the installation of 119 ULFTs and a real-time monitoring system across seven buildings on the University of Exeter campus. ULFTs were flushed 257,925 times in 177 days saving an estimated 2287 m3 per annum (compared to traditional 6 litre WCs). The annual cost saving of this reduction is approximately £12,580/annum, assuming a volumetric cost of £5.50/m3 of water. Mean discharge to the sewer network reduced by 6 m3/day. In the six-month period, 95 maintenance issues were reported, equating to 1 in 2700 flushes (0.037%). However, the frequency of incidents decreased after an initial commissioning period. There is no evidence, from blockage reports or photographs of manhole flow conditions, that the risk of blockage in the sewer network increased as a result of the ULFT installation programme. Full article
(This article belongs to the Special Issue Water Demand Management)
Show Figures

Figure 1

Back to TopTop