Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ultra-compact dwarf galaxies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 27073 KiB  
Article
Formation of Transitional cE/UCD Galaxies through Massive/Dwarf Disc Galaxy Mergers
by Alexander V. Khoperskov, Sergey S. Khrapov and Danila S. Sirotin
Galaxies 2024, 12(1), 1; https://doi.org/10.3390/galaxies12010001 - 25 Dec 2023
Cited by 5 | Viewed by 2259
Abstract
The dynamics of the merger of a dwarf disc galaxy with a massive spiral galaxy of the Milky Way type were studied in detail. The remnant of such interaction after numerous crossings of the satellite through the disc of the main galaxy was [...] Read more.
The dynamics of the merger of a dwarf disc galaxy with a massive spiral galaxy of the Milky Way type were studied in detail. The remnant of such interaction after numerous crossings of the satellite through the disc of the main galaxy was a compact stellar core, the characteristics of which were close to small compact elliptical galaxies (cEs) or large ultra-compact dwarfs (UCDs). Such transitional cE/UCD objects with an effective radius of 100–200 pc arise as a result of stripping the outer layers of the stellar core during the destruction of a dwarf disc galaxy. Numerical models of the satellite before interaction included baryonic matter (stars and gas) and dark mass. We used N-body to describe the dynamics of stars and dark matter, and we used smoothed-particle hydrodynamics to model the gas components of both galaxies. The direct method of calculating the gravitational force between all particles provided a qualitative resolution of spatial structures up to 10 pc. The dwarf galaxy fell onto the gas and stellar discs of the main galaxy almost along a radial trajectory with a large eccentricity. This ensured that the dwarf crossed the disc of the main galaxy at each pericentric approach over a time interval of more than 9 billion years. We varied the gas mass and the initial orbital characteristics of the satellite over a wide range, studying the features of mass loss in the core. The presence of the initial gas component in a dwarf galaxy significantly affects the nature of the formation and evolution of the compact stellar core. The gas-rich satellite gives birth to a more compact elliptical galaxy compared to the merging gas-free dwarf galaxy. The initial gas content in the satellite also affects the internal rotation in the stripped nucleus. The simulated cE/UCD galaxies contained very little gas and dark matter at the end of their evolution. Full article
(This article belongs to the Special Issue Galactic Structure and Dynamics)
Show Figures

Figure 1

38 pages, 1910 KiB  
Article
Warm Dark Matter Galaxies with Central Supermassive Black Holes
by Hector J. de Vega and Norma G. Sanchez
Universe 2022, 8(3), 154; https://doi.org/10.3390/universe8030154 - 28 Feb 2022
Cited by 9 | Viewed by 3196
Abstract
We generalize the Thomas–Fermi approach to galaxy structure to include central supermassive black holes and find, self-consistently and non-linearly, the gravitational potential of the galaxy plus the central black hole (BH) system. This approach naturally incorporates the quantum pressure of the fermionic warm [...] Read more.
We generalize the Thomas–Fermi approach to galaxy structure to include central supermassive black holes and find, self-consistently and non-linearly, the gravitational potential of the galaxy plus the central black hole (BH) system. This approach naturally incorporates the quantum pressure of the fermionic warm dark matter (WDM) particles and shows its full power and clearness in the presence of supermassive black holes. We find the main galaxy and central black hole magnitudes as the halo radius rh, halo mass Mh, black hole mass MBH, velocity dispersion σ, and phase space density, with their realistic astrophysical values, masses and sizes over a wide galaxy range. The supermassive black hole masses arise naturally in this framework. Our extensive numerical calculations and detailed analytic resolution of the Thomas–Fermi equations show that in the presence of the central BH, both DM regimes—classical (Boltzmann dilute) and quantum (compact)—do necessarily co-exist generically in any galaxy, from the smaller and compact galaxies to the largest ones. The ratio R(r) of the particle wavelength to the average interparticle distance shows consistently that the transition, R1, from the quantum to the classical region occurs precisely at the same point rA where the chemical potential vanishes. A novel halo structure with three regions shows up: in the vicinity of the BH, WDM is always quantum in a small compact core of radius rA and nearly constant density; in the region rA<r<ri until the BH influence radius ri, WDM is less compact and exhibits a clear classical Boltzmann-like behavior; for r>ri, the WDM gravity potential dominates, and the known halo galaxy shows up with its astrophysical size. DM is a dilute classical gas in this region. As an illustration, three representative families of galaxy plus central BH solutions are found and analyzed: small, medium and large galaxies with realistic supermassive BH masses of 105M, 107M and 109M, respectively. In the presence of the central BH, we find a minimum galaxy size and mass Mhmin107M, larger (2.2233×103 times) than the one without BH, and reached at a minimal non-zero temperature Tmin. The supermassive BH heats up the DM and prevents it from becoming an exactly degenerate gas at zero temperature. Colder galaxies are smaller, and warmer galaxies are larger. Galaxies with a central black hole have large masses Mh>107M>Mhmin; compact or ultracompact dwarf galaxies in the range 104M<Mh<107M cannot harbor central BHs. We find novel scaling relations MBH=DMh38 and rh=CMBH43, and show that the DM galaxy scaling relations Mh=bΣ0rh2 and Mh=aσh4/Σ0 hold too in the presence of the central BH, Σ0 being the constant surface density scale over a wide galaxy range. The galaxy equation of state is derived: pressure P(r) takes huge values in the BH vicinity region and then sharply decreases entering the classical region, following consistently a self-gravitating perfect gas P(r)=σ2ρ(r) behavior. Full article
Show Figures

Figure 1

Back to TopTop