Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = two-phase derived olive pomace

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3830 KiB  
Article
Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications
by Adnan Asad Karim, Mᵃ Lourdes Martínez-Cartas and Manuel Cuevas-Aranda
Polymers 2024, 16(11), 1529; https://doi.org/10.3390/polym16111529 - 29 May 2024
Cited by 1 | Viewed by 1818
Abstract
The present study aims to resolve the existing research gaps on olive pomace (OP) hydrochars application as a fuel by evaluating its molecular structures (FTIR and solid NMR analysis), identifying influential characteristics (Pearson correlation analysis), process optimization (response surface methodology), slagging–fouling risks (empirical [...] Read more.
The present study aims to resolve the existing research gaps on olive pomace (OP) hydrochars application as a fuel by evaluating its molecular structures (FTIR and solid NMR analysis), identifying influential characteristics (Pearson correlation analysis), process optimization (response surface methodology), slagging–fouling risks (empirical indices), and combustion performance (TG-DSC analysis). The response surfaces plot for hydrothermal carbonization (HTC) of OP slurry performed in a pressure reactor under varied temperatures (180–250 °C) and residence times (2–30 min) revealed 250 °C for 30 min to be optimal conditions for producing hydrochar fuel with a higher heating value (32.20 MJ·Kg−1) and energy densification ratio (1.40). However, in terms of process efficiency and cost-effectiveness, the optimal HTC conditions for producing the hydrochar with the highest energy yield of 87.9% were 202.7 °C and 2.0 min. The molecular structure of hydrochar was mainly comprised of aromatic rings with methyl groups, alpha-C atoms of esters, and ether bond linkages of lignin fractions. The slagging and fouling risks of hydrochars were comparatively lower than those of raw OP, as indicated by low slagging and fouling indices. The Pearson correlation analysis emphasized that the enrichment of acid-insoluble lignin and extractive contents, carbon densification, and reduced ash content were the main pivotal factors for hydrochar to exhibit better biofuel characteristics for energy applications. Full article
Show Figures

Figure 1

18 pages, 5607 KiB  
Article
Short-Term Effects of Olive-Pomace-Based Conditioners on Soil Aggregation Stability
by Ana Caroline Royer, Tomás de Figueiredo, Felícia Fonseca, Marcos Lado and Zulimar Hernández
Agronomy 2024, 14(1), 5; https://doi.org/10.3390/agronomy14010005 - 19 Dec 2023
Cited by 1 | Viewed by 1884
Abstract
Mediterranean agriculture asks for sustainable strategies to prevent actual soil organic matter decline rates. Composting agri-food by-products for application in farmland, besides contributing to a circular economy at regional or local scales, may improve soil resistance to physical degradation. Aggregate stability (AS) is [...] Read more.
Mediterranean agriculture asks for sustainable strategies to prevent actual soil organic matter decline rates. Composting agri-food by-products for application in farmland, besides contributing to a circular economy at regional or local scales, may improve soil resistance to physical degradation. Aggregate stability (AS) is a crucial property for building up such resistance. Olive pomace is an abundant by-product of the olive oil industry that may be valorized through composting. This study aimed to assess the influence on AS of olive-pomace-based composts (OPC) applied to a sandy loam Leptosol and a clay loam Fluvisol. To assess the effects of compost characteristics on AS, three OPCs resulting from different olive pomace proportions in the composting raw material (44, 31, and 25% by volume) were applied to aggregate samples in three doses (10, 20, and 40 t.ha−1, plus control) with fine and coarse grain sizes. Controlled laboratory conditions subjected samples to daily wetting-drying cycles during a 30-day experiment. AS was measured by wet sieving. OPC application significantly increased AS in the Leptosol amended with fine (+15% vs. control) and coarse (+19%) grain-size compost. In well-aggregated Fluvisol, amendment induced a significant increase in AS only in the compost coarse grain size (+12%). The application dose significantly affected AS, with 10 t.ha−1 being the best-performing dose. OPC applications in weakly aggregated soils are seemingly an encouraging soil management practice for improving soil resistance to physical degradation and reducing soil organic matter decline rates in Mediterranean farmland. Full article
(This article belongs to the Special Issue Soil Conservation Methods for Maintaining Farmlands' Fertility)
Show Figures

Figure 1

16 pages, 2148 KiB  
Article
Characterization of Wet Olive Pomace Waste as Bio Based Resource for Leather Tanning
by M. Mercè Solé, Laia Pons, Mireia Conde, Carmen Gaidau and Anna Bacardit
Materials 2021, 14(19), 5790; https://doi.org/10.3390/ma14195790 - 3 Oct 2021
Cited by 9 | Viewed by 4332
Abstract
Olive mill wastes represent an important environmental problem. Their high phenol, lipid, and organic acid concentrations turn them into phytotoxic materials. Specifically, wet olive pomace (WOP) is the waste generated in the two-phase continuous extraction process. WOP is a paste with around 60% [...] Read more.
Olive mill wastes represent an important environmental problem. Their high phenol, lipid, and organic acid concentrations turn them into phytotoxic materials. Specifically, wet olive pomace (WOP) is the waste generated in the two-phase continuous extraction process. WOP is a paste with around 60% water. The total volume of WOP generated is around 0.25 L/kg of olives processed. Its current waste management practices result in environmental problems as soil contamination, underground seepage, water-bodies pollution, and foul odor emissions. Some valorization alternatives include composting, biological treatments, direct combustion for energy production, or direct land application. The leather industry is making great efforts to apply cleaner processes while substituting chemical products for natural products. In this way, different alternatives are being studied, such as the use of zeolites, triazine derivatives, grape seed extract, olive leaf extract, etc. In this work, the use of wet olive pomace is presented as a possible alternative to conventional vegetable tannins (mimosa, quebracho, chestnut, etc.). Although different projects and studies have been developed for the valorization of olive mill wastes, there is completely a new approach to the WOP application for tanning purposes. This study shows that WOP has a significant number of polyphenolic substances, so it has a great potential to be used as a tanning agent. Specifically, this study has been able to determine that, of the polyphenols present in WOP, 39.6% correspond to tannins that are capable of tanning the skin. Additionally, it contains 14.3% non-tannins, that is, molecules that by themselves do not have the capacity to tan the leather but promote the tanning mechanism and improve the properties of the tanned leather. Full article
Show Figures

Graphical abstract

Back to TopTop