Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = tubulotoxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2983 KiB  
Article
Nephroprotective Effects of Two Ganoderma Species Methanolic Extracts in an In Vitro Model of Cisplatin Induced Tubulotoxicity
by Sébastien Sinaeve, Cécile Husson, Marie-Hélène Antoine, Stéphane Welti, Caroline Stévigny and Joëlle Nortier
J. Fungi 2022, 8(10), 1002; https://doi.org/10.3390/jof8101002 - 24 Sep 2022
Cited by 7 | Viewed by 2428
Abstract
Although cisplatin is used as a first-line therapy in many cancers, its nephrotoxicity remains a real problem. Acute kidney injuries induced by cisplatin can cause proximal tubular necrosis, possibly leading to interstitial fibrosis, chronic dysfunction, and finally to a cessation of chemotherapy. There [...] Read more.
Although cisplatin is used as a first-line therapy in many cancers, its nephrotoxicity remains a real problem. Acute kidney injuries induced by cisplatin can cause proximal tubular necrosis, possibly leading to interstitial fibrosis, chronic dysfunction, and finally to a cessation of chemotherapy. There are only a few nephroprotective actions that can help reduce cisplatin nephrotoxicity. This study aims to identify new prophylactic properties with respect to medicinal mushrooms. Among five Ganoderma species, the methanolic extracts of Ganoderma tuberculosum Murill., Ganoderma parvigibbosum Welti & Courtec. (10 µg/mL), and their association (5 + 5 µg/mL) were selected to study respective in vitro effects on human proximal tubular cells (HK-2) intoxicated by cisplatin. Measurements were performed after a pretreatment of 1 h with the extracts before adding cisplatin (20 µM). A viability assay, antioxidant activity, intracytoplasmic β-catenin, calcium, caspase-3, p53, cytochrome C, IL-6, NFκB, membranous KIM-1, and ROS overproduction were studied. Tests showed that both methanolic extracts and their association prevented a loss of viability, apoptosis, and its signaling pathway. G. parvigibbosum and the association prevented an increase in intracytoplasmic β-catenin. G. parvigibbosum prevented ROS overproduction and exhibited scavenger activity. None of the extracts could interfere with pro-inflammatory markers or calcium homeostasis. Our in vitro data demonstrate that these mushroom extracts have interesting nephroprotective properties. Finally, the chemical content was investigated through a phytochemical screening, and the determination of the total phenolic and triterpenoid content. Further studies about the chemical composition need to be conducted. Full article
Show Figures

Figure 1

18 pages, 2848 KiB  
Article
Uremic Toxin Indoxyl Sulfate Impairs Hydrogen Sulfide Formation in Renal Tubular Cells
by Chien-Lin Lu, Chun-Hou Liao, Wen-Bin Wu, Cai-Mei Zheng, Kuo-Cheng Lu and Ming-Chieh Ma
Antioxidants 2022, 11(2), 361; https://doi.org/10.3390/antiox11020361 - 11 Feb 2022
Cited by 6 | Viewed by 2490
Abstract
Hydrogen sulfide (H2S) was the third gasotransmitter to be recognized as a cytoprotectant. A recent study demonstrated that exogenous supplementation of H2S ameliorates functional insufficiency in chronic kidney disease (CKD). However, how the H2S system is impaired [...] Read more.
Hydrogen sulfide (H2S) was the third gasotransmitter to be recognized as a cytoprotectant. A recent study demonstrated that exogenous supplementation of H2S ameliorates functional insufficiency in chronic kidney disease (CKD). However, how the H2S system is impaired by CKD has not been elucidated. The uremic toxin indoxyl sulfate (IS) is known to accumulate in CKD patients and harm the renal tubular cells. This study therefore treated the proximal tubular cells, LLC-PK1, with IS to see how IS affects H2S formation. Our results showed that H2S release from LLC-PK1 cells was markedly attenuated by IS when compared with control cells. The H2S donors NaHS and GYY-4137 significantly attenuated IS-induced tubular damage, indicating that IS impairs H2S formation. Interestingly, IS downregulated the H2S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), and these effects could be reversed by inhibition of the IS receptor, aryl hydrocarbon receptor (AhR). As transcription factor specificity protein 1 (Sp1) regulates the gene expression of H2S-producing enzymes, we further showed that IS significantly decreased the DNA binding activity of Sp1 but not its protein expression. Blockade of AhR reversed low Sp1 activity caused by IS. Moreover, exogenous H2S supplementation attenuated IS-mediated superoxide formation and depletion of the cellular glutathione content. These results clearly indicate that IS activates AhR, which then attenuates Sp1 function through the regulation of H2S-producing enzyme expression. The attenuation of H2S formation contributes to the low antioxidant defense of glutathione in uremic toxin-mediated oxidative stress, causing tubular cell damage. Full article
(This article belongs to the Special Issue Role of Hydrogen Sulfide in Health and Disease)
Show Figures

Figure 1

15 pages, 1485 KiB  
Review
Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease
by Tong-Hong Cheng, Ming-Chieh Ma, Min-Tser Liao, Cai-Mei Zheng, Kuo-Cheng Lu, Chun-Hou Liao, Yi-Chou Hou, Wen-Chih Liu and Chien-Lin Lu
Toxins 2020, 12(11), 684; https://doi.org/10.3390/toxins12110684 - 29 Oct 2020
Cited by 76 | Viewed by 6677
Abstract
Indoxyl sulfate (IS), a uremic toxin, causes chronic kidney disease (CKD) progression via its tubulotoxicity. After cellular uptake, IS directly induces apoptotic and necrotic cell death of tubular cells. Additionally, IS increases oxidative stress and decreases antioxidant capacity, which are associated with tubulointerstitial [...] Read more.
Indoxyl sulfate (IS), a uremic toxin, causes chronic kidney disease (CKD) progression via its tubulotoxicity. After cellular uptake, IS directly induces apoptotic and necrotic cell death of tubular cells. Additionally, IS increases oxidative stress and decreases antioxidant capacity, which are associated with tubulointerstitial injury. Injured tubular cells are a major source of transforming growth factor-β1 (TGF-β1), which induces myofibroblast transition from residual renal cells in damaged kidney, recruits inflammatory cells and thereby promotes extracellular matrix deposition in renal fibrosis. Moreover, IS upregulates signal transducers and activators of transcription 3 phosphorylation, followed by increases in TGF-β1, monocyte chemotactic protein-1 and α-smooth muscle actin production, which participate in interstitial inflammation, renal fibrosis and, consequently, CKD progression. Clinically, higher serum IS levels are independently associated with renal function decline and predict all-cause mortality in CKD. The poor removal of serum IS in conventional hemodialysis is also significantly associated with all-cause mortality and heart failure incidence in end-stage renal disease patients. Scavenging the IS precursor by AST-120 can markedly reduce tubular IS staining that attenuates renal tubular injury, ameliorates IS-induced oxidative stress and rescues antioxidant glutathione activity in tubular epithelial cells, thereby providing a protective role against tubular injury and ultimately retarding renal function decline. Full article
(This article belongs to the Special Issue Uremic Toxin-Mediated Mechanisms in Cardiovascular and Renal Disease)
Show Figures

Figure 1

15 pages, 2455 KiB  
Article
TRPV1 Hyperfunction Involved in Uremic Toxin Indoxyl Sulfate-Mediated Renal Tubular Damage
by Chien-Lin Lu, Chun-Hou Liao, Kuo-Cheng Lu and Ming-Chieh Ma
Int. J. Mol. Sci. 2020, 21(17), 6212; https://doi.org/10.3390/ijms21176212 - 27 Aug 2020
Cited by 18 | Viewed by 3129
Abstract
Indoxyl sulfate (IS) is accumulated during severe renal insufficiency and known for its nephrotoxic properties. Transient receptor potential vanilloid 1 (TRPV1) is present in the kidney and acts as a renal sensor. However, the mechanism underlying IS-mediated renal tubular damage in view of [...] Read more.
Indoxyl sulfate (IS) is accumulated during severe renal insufficiency and known for its nephrotoxic properties. Transient receptor potential vanilloid 1 (TRPV1) is present in the kidney and acts as a renal sensor. However, the mechanism underlying IS-mediated renal tubular damage in view of TRPV1 is lacking. Here, we demonstrated that TRPV1 was expressed in tubular cells of Lilly Laboratories cell-porcine kidney 1 (LLC-PK1) and Madin-Darby canine kidney cells (MDCK). IS treatment in both cells exhibited tubular damage with increased LDH release and reduced cell viability in dose- and time-dependent manners. MDCK, however, was more vulnerable to IS. We, therefore, investigated MDCK cells to explore a more detailed mechanism. Interestingly, IS-induced tubular damage was markedly attenuated in the presence of selective TRPV1 blockers. IS showed no effect on TRPV1 expression but significantly increased arachidonate 12-lipoxygenase (ALOX12) protein, mRNA expression, and 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) amounts in a dose-dependent manner, indicating that the ALOX12/12(S)-HETE pathway induced TRPV1 hyperfunction in IS-mediated tubulotoxicity. Blockade of ALOX12 by cinnamyl-3,4-dihydroxy-α-cyanocinnamate or baicalein attenuated the effects of IS. Since aryl hydrocarbon receptor (AhR) activation after IS binding is crucial in mediating cell death, here, we found that the AhR blockade not only ameliorated tubular damage but also attenuated ALOX12 expression and 12(S)-HETE production caused by IS. The uremic toxic adsorbent AST-120, however, showed little effect on ALOX12 and 12(S)-HETE, as well as IS-induced cell damage. These results clearly indicated that IS activated AhR and then upregulated ALOX12, and this induced endovanilloid 12(S)-HETE synthesis and contributed to TRPV1 hyperfunction in IS-treated tubular cells. Further study on TRPV1 may attenuate kidney susceptibility to the functional loss of end-stage kidney disease via IS. Full article
(This article belongs to the Special Issue Aryl Hydrocarbon Receptor in Biology and Toxicology 2.0)
Show Figures

Figure 1

Back to TopTop