Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = triple-layer antireflection coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1431 KB  
Article
Effect of Laser Conditioning on Surface Modification and Laser Damage Resistance of SiO2 Antireflection Film
by Lijuan Zhang, Xiaolong Jiang, Jing Chen, Chuanchao Zhang, Lianghong Yan, Haijun Wang, Xiaoyu Luan, Wei Liao, Xiaodong Jiang and Yong Jiang
Crystals 2023, 13(3), 477; https://doi.org/10.3390/cryst13030477 - 10 Mar 2023
Cited by 5 | Viewed by 2307
Abstract
SiO2 sol-gel antireflection film coated on fused silica can reduce the reflection loss and improve the transmittance of the optical component, although it is still prone to laser induced damage. Laser conditioning is an effective way to improve the laser induced damage [...] Read more.
SiO2 sol-gel antireflection film coated on fused silica can reduce the reflection loss and improve the transmittance of the optical component, although it is still prone to laser induced damage. Laser conditioning is an effective way to improve the laser induced damage threshold (LIDT) of SiO2 sol-gel antireflection film. In this paper, single-layer SiO2 sol-gel antireflection films pretreated by triple-frequency laser with different parameters are characterized by the macroscopical parameters, such as transmittance, refractive index, and thickness. The law of surface modification and the defect removal mechanism of the SiO2 sol-gel antireflection film by laser conditioning are obtained. It is found that laser conditioning can reduce the thickness of the film and introduce densification. In addition, laser conditioning can eliminate micro-defects, such as vacancies and voids in the preparation of SiO2 sol-gel antireflection films, which is the main reason to improve the laser damage resistance of films. Finally, the laser conditioning process with three step laser energy combinations of (0.2–0.6–1.0) Fth0 (zero damage threshold) is the best one to obtain high transmittance, and excellent effects on structure modification and defect removal of films. The research in this paper provides data support for the engineering application and mechanism research of laser conditioning. Full article
(This article belongs to the Topic Laser-Induced Damage Properties of Optical Materials)
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 3133 KB  
Article
Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC
by Marwa S. Salem, Abdelhalim Zekry, Ahmed Shaker, Mohamed Abouelatta, Tariq S. Almurayziq, Mohammad T. Alshammari and Mohamed M. El-Banna
Energies 2022, 15(19), 7179; https://doi.org/10.3390/en15197179 - 29 Sep 2022
Cited by 1 | Viewed by 2759
Abstract
In the current study, the performance of the npn solar cell (SC) microstructure is improved by inspecting some modifications to provide possible paths for fabrication techniques of the structure. The npn microstructure is simulated by applying a process simulator by starting with a [...] Read more.
In the current study, the performance of the npn solar cell (SC) microstructure is improved by inspecting some modifications to provide possible paths for fabrication techniques of the structure. The npn microstructure is simulated by applying a process simulator by starting with a heavily doped p-type substrate which could be based on low-cost Si wafers. After etching deep notches through the substrate and forming the emitter by n-type diffusion, an aluminum layer is deposited to form the emitter electrode with about 0.1 µm thickness; thereby, the notches are partially filled. This nearly-open-notches microstructure, using thin metal instead of filling the notch completely with Al, gives an efficiency of 15.3%, which is higher than the conventional structure by 0.8%. Moreover, as antireflection coating (ARC) techniques play a crucial role in decreasing the front surface reflectivity, we apply different ARC schemes to inspect their influence on the optical performance. The influence of utilizing single layer (ZnO), double (Si3N4/ZnO), and triple (SiO2/Si3N/ZnO) ARC systems is investigated, and the simulation results are compared. The improvement in the structure performance because of the inclusion of ARC is evaluated by the relative change in the efficiency (Δη). In the single, double, and triple ARC, Δη is found to be 12.5%, 15.4%, and 17%, respectively. All simulations are performed by using a full TCAD process and device simulators under AM1.5 illumination. Full article
(This article belongs to the Special Issue Modeling and Simulation of Solar Cells)
Show Figures

Figure 1

16 pages, 5139 KB  
Article
Low-Temperature Preparation of SiO2/Nb2O5/TiO2–SiO2 Broadband Antireflective Coating for the Visible via Acid-Catalyzed Sol–Gel Method
by Siyuan Xu, Hongbao Jia, Chunyang Wang, Wenping Zhao, Ying Wang, Chunming Yang, Henan Wu, Jiang Zhu, Biao Wang and Qian Wang
Coatings 2020, 10(8), 737; https://doi.org/10.3390/coatings10080737 - 28 Jul 2020
Cited by 14 | Viewed by 5726
Abstract
Multilayer broadband antireflective (AR) coatings consisting of porous layers usually suffers poor functional durability. Based on a quarter-half-quarter multilayer structure, AR coatings with dense SiO2 film as the top layer are designed, and refractive index for each layer is optimized. After heat-treated [...] Read more.
Multilayer broadband antireflective (AR) coatings consisting of porous layers usually suffers poor functional durability. Based on a quarter-half-quarter multilayer structure, AR coatings with dense SiO2 film as the top layer are designed, and refractive index for each layer is optimized. After heat-treated at only 150 °C, refractive index of Nb2O5 film reaches to 2.072 (at 550 nm), which can meet design requirements of the middle layer. TiO2–SiO2 composites with controllable refractive indices are selected to be used as the bottom layer. The obtained triple-layer AR coating presents excellent performance, and the average transmittance at 400–800 nm attains 98.41%. Dense layers endow the multilayer structure good abrasion-resistance, and hexamethyldisilazane is further used to modify the surface of the AR coating, which can greatly improve the hydrophobicity of the coating. The proposed triple-layer broadband AR coating has potential value in practical applications of sol–gel deposition. Full article
(This article belongs to the Special Issue Design of Functional Coatings by Chemical Methods)
Show Figures

Figure 1

11 pages, 3844 KB  
Article
Application of Silicon Oxide on High Efficiency Monocrystalline Silicon PERC Solar Cells
by Shude Zhang, Yue Yao, Dangping Hu, Weifei Lian, Hongqiang Qian, Jiansheng Jie, Qingzhu Wei, Zhichun Ni, Xiaohong Zhang and Lingzhi Xie
Energies 2019, 12(6), 1168; https://doi.org/10.3390/en12061168 - 26 Mar 2019
Cited by 27 | Viewed by 5978
Abstract
In the photovoltaic industry, an antireflection coating consisting of three SiNx layers with different refractive indexes is generally adopted to reduce the reflectance and raise the efficiency of monocrystalline silicon PERC (passivated emitter and rear cell) solar cells. However, for SiNx [...] Read more.
In the photovoltaic industry, an antireflection coating consisting of three SiNx layers with different refractive indexes is generally adopted to reduce the reflectance and raise the efficiency of monocrystalline silicon PERC (passivated emitter and rear cell) solar cells. However, for SiNx, a refractive index as low as about 1.40 cannot be achieved, which is the optimal value for the third layer of a triple-layer antireflection coating. Therefore, in this report the third layer is replaced by SiOx, which possesses a more appropriate refractive index of 1.46, it and can be easily integrated into the SiNx deposition process with the plasma-enhanced chemical vapor deposition (PECVD) method. Through simulation and analysis with SunSolve, three different thicknesses were selected to construct the SiOx third layer. The replacement of 15 nm SiNx with 30 nm SiOx as the third layer of antireflection coating can bring about an efficiency gain of 0.15%, which originates from the reflectance reduction and spectral response enhancement below about 550 nm wavelength. However, because the EVA encapsulation material of the solar module absorbs light in short wavelengths, the spectral response advantage of solar cells with 30 nm SiOx is partially covered up, resulting in a slightly lower cell-to-module (CTM) ratio and an output power gain of only 0.9 W for solar module. Full article
Show Figures

Graphical abstract

12 pages, 5075 KB  
Article
Interface Crystallization of Ceria in Porous Silica Films for Solar Applications
by Gundula Helsch and Joachim Deubener
Crystals 2017, 7(3), 80; https://doi.org/10.3390/cryst7030080 - 8 Mar 2017
Cited by 1 | Viewed by 5015
Abstract
Antireflective (AR) coatings with photocatalytic activity for solar cover glasses are extensively investigated at present, mostly in multilayer systems including titania. In this study, bifunctional single coats from porous silica in combination with up to 33 mol % ceria were prepared by sol–gel [...] Read more.
Antireflective (AR) coatings with photocatalytic activity for solar cover glasses are extensively investigated at present, mostly in multilayer systems including titania. In this study, bifunctional single coats from porous silica in combination with up to 33 mol % ceria were prepared by sol–gel dip-coating on low-iron soda-lime float glass. After heat treatment for one hour at 350 °C, the coated glasses were characterized. Solar transmittance decreased with increasing ceria content, whereas photocatalytic activity increases. Crystallization of cubic ceria was detected by grazing incidence X-ray diffraction. Chemical depth profiling by secondary neutral mass spectrometry revealed the enrichment of cerium at the coating surface as well as at the interface to the glass substrate. Self-assembled ceria crystallization at the interfaces resulted in a three-layered mesostructure of the coating, which was verified by field-emission scanning electron spectroscopy. Cubic ceria crystals at the interface act as a barrier for the sodium diffusion from the substrate, which prevents the poisoning of the photocatalyst, while those crystals at the surface act as an electron donor for photooxidation processes, both enabling adequate photocatalytic activity. The triple-layer architecture with the sequence of high/low/high refractive index materials allows for optical interference sustaining the AR-function. Full article
(This article belongs to the Special Issue Crystallization of Sol-Gel Derived Glasses)
Show Figures

Graphical abstract

Back to TopTop