Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = trilinear bond–slip relationship

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5464 KiB  
Article
Bonding Properties of Embedded Fiber Reinforced Polymer Strip-Engineered Cementitious Composite Joints
by Weiwen Li, Wujun Fang, Yao Lu, Wanye Li, Jingming Yang, Hao Wang, Peng Wang, Yaocheng Wang and Hongzhi Cui
Polymers 2025, 17(8), 1049; https://doi.org/10.3390/polym17081049 - 12 Apr 2025
Viewed by 413
Abstract
The combination of fiber reinforced polymer (FRP) and engineered cementitious composite (ECC) has emerged as a promising method for strengthening reinforced concrete (RC) structures. By embedding FRP within an ECC to form a composite reinforcement layer, the advantages of both materials can be [...] Read more.
The combination of fiber reinforced polymer (FRP) and engineered cementitious composite (ECC) has emerged as a promising method for strengthening reinforced concrete (RC) structures. By embedding FRP within an ECC to form a composite reinforcement layer, the advantages of both materials can be effectively harnessed, and the dense ECC matrix can be employed to safeguard FRP from adverse environments. Significantly, the interface bonding property constitutes the key for the two materials to collaborate effectively. In light of the research gap related to the bonding performance of embedded FRP strips in ECC joints, this study conducted a bench-scale investigation into the pull-out behavior of carbon FRP (CFRP) strips within an ECC. The relationship between the average bonding strength (2.84 MPa~4.77 MPa) and the embedded length of FRP strips was established. Additionally, the pull-out mechanism of FRP strips within an ECC matrix was utilized to elucidate the influence of the embedded length on the distinct behavior of FRP strips within an ECC. An analytical method for predicting the full-range behavior of embedded FRP strip–ECC joints by using a trilinear bond–slip relationship was introduced. Four key parameters of the trilinear bond–slip relationship for embedded FRP strip–ECC joints were provided to meet the requirements of future engineering applications. Full article
(This article belongs to the Special Issue New Insights into Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

28 pages, 3967 KiB  
Article
Degradation of Interfacial Bond for FRPs Near-Surface Mounted to Concrete Under Fatigue: An Analytical Approach
by Xun Wang and Lijuan Cheng
Fibers 2025, 13(1), 9; https://doi.org/10.3390/fib13010009 - 15 Jan 2025
Viewed by 846
Abstract
In this study, an analytical model was developed for the local bond degradation behavior between a near-surface mounted (NSM) fiber-reinforced polymer (FRP) and concrete under fatigue loading. A trilinear local bond stress–slip relationship was adopted to characterize the fundamental bond behavior at the [...] Read more.
In this study, an analytical model was developed for the local bond degradation behavior between a near-surface mounted (NSM) fiber-reinforced polymer (FRP) and concrete under fatigue loading. A trilinear local bond stress–slip relationship was adopted to characterize the fundamental bond behavior at the FRP-epoxy-concrete interface at different stages of elastic, softening and debonding. A series of post-fatigue direct pull-out tests (DPTs) of NSM FRP-bonded concrete blocks was conducted to provide the local bond degradation laws for the analytical model. The bond region was discretized into finite elements to include the effect of bond degradation to different extents, and a closed-form solution was derived by virtue of appropriate boundary conditions in each fatigue cycle. The model is capable of predicting the FRP strain distribution, local bond stress distribution and relative slip development at a targeted number of fatigue cycles. The reliability of the analytical model was confirmed by experimental data, and its sensitivity to various parameters such as local bond strength, the residual bond strength ratio and Young’s modulus of FRP reinforcement was also assessed in this study. Full article
Show Figures

Figure 1

23 pages, 12241 KiB  
Article
Bridging Behavior of Palm Fiber in Cementitious Composite
by Selamawit Fthanegest Abrha, Helen Negash Shiferaw and Toshiyuki Kanakubo
J. Compos. Sci. 2024, 8(9), 361; https://doi.org/10.3390/jcs8090361 - 16 Sep 2024
Viewed by 1542
Abstract
This study addresses the growing need for sustainable construction materials by investigating the mechanical properties and behavior of palm fiber-reinforced cementitious composite (FRCC), a potential eco-friendly alternative to synthetic fiber reinforcements. Despite the promise of natural fibers in enhancing the mechanical performance of [...] Read more.
This study addresses the growing need for sustainable construction materials by investigating the mechanical properties and behavior of palm fiber-reinforced cementitious composite (FRCC), a potential eco-friendly alternative to synthetic fiber reinforcements. Despite the promise of natural fibers in enhancing the mechanical performance of composites, challenges remain in optimizing fiber distribution, fiber–composite bonding mechanism, and its balance to matrix strength. To address these challenges, this study conducted extensive experimental programs using palm fiber as reinforcement, focusing on understanding the fiber–matrix interaction, determining the pullout load–slip relationship, and modeling fiber bridging behavior. The experimental program included density calculations and scanning electron microscope (SEM) analysis to examine the surface morphology and diameter of the fibers. Single fiber pullout tests were performed under varying conditions to assess the pullout load, slip behavior, and failure modes of the palm fiber, and a relationship between the pullout load and slip with the embedded length of the palm fiber was constructed. A trilinear model was developed to describe the pullout load–slip behavior of single fibers, and a corresponding palm-FRCC bridging model was constructed using the results from these tests. Section analysis was conducted to assess the adaptability of the modeled bridging law calculations, and the analysis result of the bending moment–curvature relationship shows a good agreement with the experimental results obtained from the four-point bending test of palm-FRCC. These findings demonstrate the potential of palm fibers in improving the mechanical performance of FRCC and contribute to the broader understanding of natural fiber reinforcement in cementitious composites. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution)
Show Figures

Figure 1

18 pages, 8739 KiB  
Article
Bond and Cracking Characteristics of PVA-Fiber-Reinforced Cementitious Composite Reinforced with Braided AFRP Bars
by Shugo Takasago, Toshiyuki Kanakubo, Hiroya Kobayashi and Hideto Sasaki
Fibers 2023, 11(12), 107; https://doi.org/10.3390/fib11120107 - 6 Dec 2023
Cited by 3 | Viewed by 2417
Abstract
Easy maintenance and high durability are expected in structures made with fiber-reinforced cementitious composite (FRCC) reinforced with fiber-reinforced polymer (FRP) bars. In this study, we focused on the bond and cracking characteristics of polyvinyl alcohol (PVA)-FRCC reinforced with braided AFRP bars (AFRP/PVA-FRCC). Pullout [...] Read more.
Easy maintenance and high durability are expected in structures made with fiber-reinforced cementitious composite (FRCC) reinforced with fiber-reinforced polymer (FRP) bars. In this study, we focused on the bond and cracking characteristics of polyvinyl alcohol (PVA)-FRCC reinforced with braided AFRP bars (AFRP/PVA-FRCC). Pullout tests on specimens with varying bond lengths were conducted. Beam specimens were also subjected to four-point bending tests. In the pullout tests, experimental parameters included the cross-sectional dimensions and the fiber volume fractions of PVA-FRCC. A trilinear model for the bond constitutive law (bond stress–loaded-end slip relationship) was proposed. In the pullout bond test with specimens of long bond length, bond strength was found to increase with increases in both the fiber volume fraction and the cross-sectional dimension of the specimens. Bond behavior in specimens of long bond length was analyzed numerically using the proposed bond constitutive law. The calculated average bond stress–loaded-end slip relationships favorably fitted the test results. In bending tests with AFRP/PVA-FRCC beam specimens, high ductility was indicated by the bridging effect of fibers. The number of cracks increased with increases in the fiber volume fraction of PVA-FRCC. In specimens with a fiber volume fraction of 2%, the load reached its maximum value due to compression fracture of the FRCC. The crack width in PVA-FRCC calculated by the predicted formula, considering the bond constitutive law and the fiber bridging law, showed good agreement with the reinforcement strain–crack width relationship obtained from the tests. Full article
Show Figures

Graphical abstract

Back to TopTop